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1.0 INTRODUCTION

1.1 Significance of the Problem

Advanced materials for aerospace, structural, power and propulsion applications offer

significant advantages in terms of efficiency and cost. This has been the reason for the ever

increasing use of advanced composite materials in recent years. For example, most new or

recently manufactured aircraft include structural parts made of composite materials. Although

practical usage of composite materials in the modem age originated in aircraft and aerospace

industries, their advantages are now recognized by all major industries. A widespread and

efficient application of composite materials requires detailed and reliable knowledge cf thtir

physical properties and, in turn, of their behavior under applied loads. There are a number of

important technical problems associated with the use of composite materials. One such prob-

lem is the effect of discontinuities (holes and notches) on the strength of composite laminates.

This issue is critical for the determination of the load bearing capacity of composite laminates;

which is directly applicable to the design of composite panels and the location of fastener

holes. Indeed, the manufacture and repair of advanced composite structures have serious

problems connected with the placement of fastener holes. This is especially relevant to com-

posite panel repair, both in the field and at the repair facility. At the present time all depots

are confronted with these problems. The lack of appropriate data has resulted in new and in-

service designs which are often unnecessarily conservative and expensive (both in cost and

turn-around-time). Another related problem concerning composite materials is the issue of

interlaminar response of composite materials which is directly related to delamination and

edge effects in composites. In recent time, delamination has become the most feared failure

mode in laminated composite structures. It can exhibit unstable crack growth, and while

delamination failure itself is not usually a catastrophic event, it can perpetrate such a condi-

tion due to its weakening influence on a component in its resistance to subsequent failure

modes. What had begun in 1970 as somewhat of an academic curiosity turned into a beehive
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of research activity in recent years. Study of delamination is now one of the most prominent

topics in composite mechanics research. Another related issue in the engineering application

of composite materials is the use of numerical methods and, in particular, the finite element

method in linear/nonlinear modeling of composite laminates. The various composite shell and

composite solid elements that are available today are not adequate for advanced applications.

These elements are formulated using one or another form of classical shell theories and

although they provide acceptable results in simple loading conditions, but they are not capable

of predicting accurate structural response for extreme in-use loading conditions of aerospace

systems. One reason for this deficiency has been the lack of powerful theory for composite

laminates. Yet another issue in composite laminates is the development of constitutive rela-

tions which adequately represent the effect of the constituents. In general, our knowledge of

the thermo-mechanical behavior of composite materials and their constitutive relations has

lagged behind advances in such other related areas as increasingly sophisticated computers

and computational methods for solution of complex problems. Proper understanding and

characterization of available and new composite laminates and implementation of their consti-

tutive models in modern (computational) solution procedures is a vital component for safe,

economical and competitive design in aerospace applications. It is believed that for a reliable

structural analysis, the constitutive models of composite materials should be based on sound

thermo-mechanical principles. All the foregoing problems share one common deficiency,

namely, the lack of an adequate and sound theory applicable to composite laminates, a theory

predicated upon solid physical principles and sound mathematical analysis that can account for

the effects of micro-structure, material nonlinearity, geometric nonlinearity, interlaminar

stresses, and complex geometry.

In phase I of this research project the feasibility of the development of such a theory was

studied. The present work is a continuation of the phase I effort to develop a complete

thermo-mechanical theory for composite laminates that exhibits the following characteristics:
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a) It accounts for the effects of micro-structure.

b) It accounts for the effects of geometric nonlinearity.

c) It accounts for the effects of curvature.

d) It accounts for the effects of interlaminar stresses. The three components of the

interlaminar stresses are included in the theory and can be determined numerically.

e) It has a continuum character.

f) It is applicable to both static and dynamic problems.

Due to the use of Cosserat surface theory, we have called the proposed theory Cosserat com-

posite theory.

In the past, several theories have been proposed for the modeling of multilayered plates

and shells. Noor and Burton (1990) assessed the computational models for multilayered com-

posite shells. They presented a list of 400 related publications and they identified the follow-

ing four general approaches for constructing two-dimensional theories for multilayered shells:

1. method of hypotheses.

2. method of expansion.

3. asymptotic integration technique.

4. iterative methods and methods of successive corrections.

Some of these approaches were reveiwed in the phase I of this research project. Although

each of these theories has its own advantages, we would like to emphasize that, as a general

assessment, none of these theories possesses the features of Cosserat composite theory collec-

tively. In particular, the interlaminar stresses were not addressed in most of these theories and

their applications were limited to situations where the composite laminate is made of a few

number of layers. These limitations are not present in the Cosserat composite theory.
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The Cosserat composite theory, because of its continuum character, is best suited for

modeling thick composite laminates composed of several (order of hundreds) thin plies.

Furthermore, the interlaminar stresses, which are responsible for delamination failures, are

incorporated into the formulation of the theory in a natural and consistent manner and without

any ad hoc assumptions. Considering these technical issues, the objectives of our research

project were developed. In the following a detailed description of these objectives is

presented.

1.2 Objectives of the Present Research Project

Some technical issues associated with the application of composite laminates were

addressed above. The present research effort is directed toward studying these issues. In this

regard the following objectives have been identified to be addressed in the project:

1. Development of strain measures based on the kinematics of micro- and macro-

structures of composite laminates and relating these strain measures to the compo-

site stress and composite stress couple tensors. In particular, development of consti-

tutive relations for elastic behavior of composite laminates in the context of

infinitesimal deformations that can be applicable to any loading condition including

pure bending and pure extension is a part of this task.

2. Further development of the Cosserat composite theory to a thermo-mechanical

theory for multi-constituent, anisotropic laminates. The theory outlined in phase I

of the project is a nonlinear continuum theory which is applicable to composite lam-

inates that are composed of two homogeneous and isotropic constituents within the

context of purely mechanical theory. The generalization of the theory to include the

effect of temperature, anisotropy and inl particular stacking sequence/fiber orienta-

tion in fiber reinforced composite laminates will be carried out in this task.
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3. Application of the theory to various practical problems. The micro-macro contin-

uum structure built in the kinematics of Cosserat composite theory provides an ideal

model for the analysis of thick composite laminates composed of a large number of

thin plies. Due to the importance of the interlaminar stresses and edge effects at the

boundaries of composite plates and shells the Cosserat composite theory will be

utilized for the analysis of composite laminates under in-plane and out-of-plane

loading conditions. The existing theories that address the interlaminar stresses are

not manageable when the number of layers exceeds seven or eight (Pagano, 1989).

We commented earlier on the significance of the effect of discontinuity in compo-

site laminates and the urgent need for solutions to such problems. In this regard,

the analysis of an initially flat composite laminate containing a circular hole will be

pursued and the effects of the discontinuity will be studied.

4. Variational formulation of the Cosserat composite theory suitable for finite element

discretization of composite laminates. This part includes the following activities:

* formulation of field equations and constitutive relations in a form suitable for

finite element implementation and derivation of weak forms of these equations.

* linearization of the weak form in terms of linearized strain measures and finite

element interpolation of the representative Cosserat surface and the director

field and approximation of various stress components.

* numerical implementation of the theory and evaluation of performance of the

proposed finite element model in solving various practical problems.

Our efforts during the year 1991 were directed toward the achievement of these objectives.

The results are summarized next.
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1.3 Present Status of the Project

The results of our research efforts during the last year are presented in section 2.0

through section 7.0 of this report. A summary of the contents of these sections is presented in

the following.

In section 2.0 the kinematics of the micro- and macro-structures were examined and the

relationship between strain measures at micro- and macro-levels were derived. The field

equations for compos e laminates were derived through a direct integration of field equations

of classical continuum mechanics. The linearized kinematic measures were derived in the

context of infinitesimal deformation and the relation of linear strain measures with displace-

ment vector and director displacement vector were obtained. The equations of motion in the

linear theory were derived and were presented for both curved and flat geometries.

Section 3.0 showed the derivation of constitutive relations for composite laminates. A

procedure for deriving the relation between composite quantities (i.e., composite stress tensor

and composite couple stress tensor) and strain measures at macro-level were presented. The

derivation was performed for a bi-constituent composite laminate and the constitutive relations

were expressed in terms of material constants associated with every individual layer.

Section 4.0 presented the complete theory for linear elastic composite laminates. The

relationship between the displacement vector and the director displacement vector was derived

based on the geometrical continuity at interfaces. The field equations were derived in terms

of displacement vector and it was shown that classical continuum theory can be derived from

Cosserat composite theory for the case of a single constituent. The theory was further

simplified for bi-laminate micro-structure composed of isotropic constituents. Finally the con-

stitutive relations for composite stress tensor, composite couple stress tensor and interlaminar

stress vector were derived in terms of the displacement vector, its gradients and material con-

stants of individual constituents.
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Section 5.0 was the extension of the theory for multi-constituent composites. The micro-

structure or representative element was assumed to be composed of several constituents which

repeated themselves in the layering direction. The development of this section is particularly

suited for fiber reinforced composites where the fiber direction changes in the stacking

sequence of the plies. The theory was simplified for the case of isotropic constituents.

Section 6.0 presented the extension of the theory from a purely mechanical theory to a

thermo-mechanical theory. In this section composite field quantities crresponding to the heat

flux vector, the heat supply and the specific entropy of classical thermo-mechanical theory

were introduced and the equation of local balance of energy and the Clausius-Duhem inequal-

ity were derived in terms of these composite field quaniies.

Section 7.0 presented the constitutive relations of linear thermo-elasticity for composite

laminates. These constitutive relations were derived for the composite stress tensor, compo-

site couple stress tensor, entropy, heat flux vector and heat flux couple vector. The develop-

ments of this section were parallel to those of section 4.0 and a set of coupled thermo-

mechanical field equations in terms of the displacement vector and the temperature were

presented. The continuation of these efforts is briefly discussed in the Future Work section.

We would like to emphasize that because of the very complex nature of composite

materials, aay general continuum theory capable of representing various behavioral aspects of

these materials will be complicated. During the course of these developments, two lines of

thought regarding the interpretation of various field quantities of the theory were considered.

Accordingly, some of the earlier developments of the phase I were re-examined and a few

modifications regarding the definition of the field quantities were introduced. This process

required a concentrated effort by all team members, but it had its own rewards. The modeling

and the mathematical issues were clarified and a better understanding of various features of

the theory was achieved.
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The field equations for composite laminates, as presented in section 2.0 and section 6.0,

were derived directly from corresponding field equations of classical continuum mechanics.

In this derivation the existence of a micro-structure in the form of a Cosserat surface was

assumed for the composite laminates. A parallel development of the theory is presented in

Volume II of the report in which the conservation laws of a single micro-structure (i.e., a

Cosserat surface) were integrated across the layering direction of the composite laminate.

This integration process provided the global balance laws for composite laminates and the

governing field equations were derived from these global balance laws.

Some of these developments were presented in the AFOSR contractors meeting on

Mechanics of Materials in October 1991 in Dayton, Ohio. A copy of this presentation is

included in Volume II. Also the draft of a technical paper presenting the field equations of

composite laminates as derived from conservation laws was prepared for publication in the

International Journal of Engineering Science. A copy of this draft report is also included in

Volume I of the present report. The research efforts presented here were carried out by Dr.

M. Panahandeh, Dr. G. R. Ghanimati, Dr. V. Schricker and Dr. M. Mahzoon, a visiting scho-

lar with the University of California, Berkeley.

1.4 Future Work

We are very encouraged with the developments of this project. These developments pro-

vide a framework for the modeling and analysis of various composite laminates and can be

extended to study a wide range of technical issues associated with the application of compo-

site laminates such as nonlinear material behvior, stability analysis, damage growth and failure

mechanisms, to name a few.

The continuation of the present work to achieve the technical objectives of the project, as

Ioutlined in Section 1.2, is planned for this year. In particular, the analysis of composite lam-

inates under in-plane and out-of-plane loadings and the numerical solution of the system of
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equations derived in Section 4.0 is given immediate priority. Theoretical development of the

theory for cylindrical and spherical geometries is underway. The derivation of constitutive

relations for orthotropic materials presenting fiber reinforced plies with various fiber orienta-

tions and different stacking sequences is also a part of this year's effort. The finite element

formulation of the theory and development of a composite shell element will be followed

immediately after the completion of the theoretical developments.
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2.0 MICRO-MACRO CONTINUUM MODEL OF COMPOSITE LAMINATES

2.1 Kinematics of Micro- and Macro-Structures

Let the points of a region Rin a three dimensional Euclidean space be referred to a fixed

right-handed rectangular Cartesian coordinate system xi (i = 1,2,3) and let 9 i (i = 1,2,3) be a gen-

eral conmctudcurvilinear coordinate system defined by the transformation xi = xi(0J). We assume

this transformation is nonsingular in R Furthermore, let 4 represent the coordinate of a micro-

structure in the layering direction with 4 = 0 corresponding to the bottom surface of the micro-

structure. We recall that a convected coordinate system is normally defined in relation to a con-

tinuous body and moves continuously with the body throughout the motion of the body from one

configuration to another.

Throughout this work, all Latin indices (subscripts or superscripts) take the values 1,2,3; all

Greek indices (subscripts or superscripts) take the values 1,2 and the usual summation conven-

tion is employed. We will use a comma for partial differentiation with respect to coordinates 01t

and a superposed dot for material time derivative, i.e., differentiation with respect to time hold-

ing the material coordinates fixed. Also, we use a vertical bar ( I ) for covariant differentiation.

In what follows, when there is a possibility of confusion, quantities which represent the same

physical/geometrical concepts will be denoted by the same symbol but with an added asterisk (*)

for classical three dimensional continuum mechanics and no addition for composite laminate

(macro-structure). For example, the mass densities of a body in the contexts of the classical con-

tinuum mechanics, and the composite laminate (macro-structure) will be denoted by p* and p,

respectively.

The micro-macro continuum model of a composite laminate is illustrated in Figures 1 and

2. Figure 1 shows a typical composite laminate (only three micro-structures are shown in this

figure). Figure 2 shows a shell-like micro-structure with its associated coordinates. This micro-

structure is composed of two constitutents and can be generalized for cases of multi-constituent

composites.

i
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Figure1
A composite laminate consisting of alternating

layers of two materials
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We begin the development of the kinematical results by assuming that the position vector

of a particle P* of a representative element (kth micro-structure), i.e., p*(Oa,03(),4,t) in the

present configuration has the form

p* = r(O',03(k',t) + 4d(u,0'3(k),t) (k = 1...n) (2.1)

where r is the position vector for the surface 4 = 0 and d is the director field. 03(), at this

point, is an identifier for the kh micro-structure. Greek super- or subscripts will assume

values of 1 and 2 only. The dual of (2.1) in a reference configuration is given by

P* = R*(0a,03(k)) + 4D(c,03(k)) (2.2)

If the reference configuration is taken to be the initial configuration at time t = 0, we obtain

p,(OaO(3(k),4,0) = r(Oa,03(),O) + 4d(Oa3,(k)O)

= R(Oa,0 3(k)) + 4D(Oa,O3(k)) = P*(Oa,03(k),4) (2.3)

The velocity vector v* of the three-dimensional shell-like micro-structure at time t is

given by

V* (2.4)
= P*(eOa'0(0' 't) = l *(Oct,9 3(Ic, ,t) (2.4)

where a superposed dot denotes the material time derivative, holding O' and 4 fixed. From

(2.1) and (2.4) we obtain

v v + 4w (2.5)

where
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v=i , w=d (2.6)

The base vectors for the micro- and macro-structures are denoted by gi* and gi, respec-

tively, and we have

(2.7)

Using (2.1) and (2.7) we obtain the following relations between gi* and gi

g= ga + d,a

(2.8)
g =g3= d

where ( ) denotes partial differentiation with respect to Oct.

By a smoothing assumption we suggest the existence of continuous vector functions

gi(Oa,0 3) for the macro-structure with the following property

gi(0a,0 3)1 03=03) = g(0a,03(k)) (2.9)

where g(0,0 3(k)) are defined according to (2.7)2. A similar smoothing assumption is also

made for the director d which we like to attach to every point of the macro-structure. Based

on the smoothing assumptions we can write (2.8), as follows

9; = ga + 4gk (3 k I) (2.10)

where { I stands for the Christoffel symbol of the second kind and is defined as

(3 k a) = gkj[3ocjkj - "g ( aea + a - aga)
2 g a(..... + - -4
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The following relations can also be derived between the components of metric tensors

j g" g! and gij = gi" gj

9;P =- gat + [1(3 k a)}gk + (3 k p)gak] + 4213 "kJ (33 j 0)gkj

= = gc,3 + 413 k a) gk3 (2.11)

g33 = g33

which after simplification and linearization in terms of 4 reduce to

= P = gap + 4gx,3

13 3 + -"4933.. (2.12)

933 = 933

The determinants of metric tensors g* and gij are also related according to the following

relation

g* = g + EA (2.13)

where

g= det(g,) , g = det(gij)

[g1 1 3 g1239 33 ,1] g11 12 g 13

A =9]12 922 923 + 9g12.3922,3933.2

[g 13 g23 g 33  g13 g23 g33

and the final result has been linearized in terms of 4.

We recall that the director d is the same as g3 and therefore when referred to the base

vectors g it has only one non-zero component, namely d3 = 1, so we can write
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d=dgi , d'=0 , d3 =1

(2.15)

di =gijd  , di = g3 (i=1,2,3)

where d, and di denote the covariant and contravariant components of d referred to gi and gi,

respectively. The gradient of the director d may be obtained as follows

d= g3 i = (3 k i)gk = dk Igk

The vertical bar ( I ) denotes covariant differentiation with respect to gij. For convenience we

introduce the notations

jj = gi" d~ j = 4Ij

(2.17)

Xij = gi . dj = dijj

From (2.17) it is clear that

Xij =__ gikX kj (2.18)

Making use of (2.17) and (2.16) we have:

2ij = dij = (3 i j)

(2.19)
ij = gki')k = [3j,i]

Consider now the velocity vector v which can be written in the form

V = vigi = vigi  (2.20)

Again we make a smoothing assumption for the existence of the vector function V(Oa,03) such

that v(O 0&3) 103= m) = .;(ea,03(k)) after which we can define the gradient of the velocity field

and we have

vi = (vjgj).i = vIigj  (2.21)
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We now introduce the notations

Vij gi Vj = Vilj

(2.22)
vi = gi. vj = vi Ij

From (2.22) it is clear that

V 5 --- gik vkj

(2.23)
Vi = vigJ = vJigj

We observe that both .ij and vii represent the covariant derivative of vector components and

hence transform as components of second order covariant tensors.

We may decompose vij into its symmetric and skew-symmetric parts, i.e.,

vi= vw) + viiji = lhi +

ij = = " " (vij4+Vji) = 11ji (2.24)

(ij =- Vij] I " (Vij-Vji) -)j

Also in view of (2.6), (2.7)2 and (2.24)1 we may express i in the form

6= Vi= (flk + (D)g~

(2.25)
i3 d = k = Wkg Wkgk

The gradient of the director velocity in 0" direction is obtained by writing
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= 'gk + )LaO(TkO+(Ok)gk + X,3wkgk

= [i + 4(1i (--+ ) + A wk]gk (2.26)

The dual of the above expressions in the reference configuration can be written easily by

substituting appropriate capital letters for small letters.

We now introduce relative kinematic measures Yij and r.ij such that

1
ij= 1 (gij - Gif) = 'Yji (2.27)

Xi 1j = -jj - Aij (2.28)

where

Gij -G i " Gj (2.29)

Aij = [3j,i] = - - (G3i, + Gji,3-G3jj) (2.30)

Making use of (2.12) and similar expressions for the reference configuration we can

relate relative kinematic measures 4i of the micro-structure as follows

a = ¥fa = I (g p - G1 p) [(gap + 4 gap 3) - (Gap + Ga.3)]

yap + -" 4(ga13 - Ga,3)

A + I a( + Kpa) (2.31)

y;3 - =  " [(ga3 + .. g33 ,a) - (Ga3 + -14 G33,a)]

Yc31a 2 (x 2 - 2

1
- 73 + j 4 K30 (2.32)
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Y33 = 733 (2.33)

In obtaining the above results we have noted that

kap = [3Dot] = - (g3.[ - 13a) +  gaA.3

2 2 3 ,z ~ a,

)-3a = [3a,3] = g33 .a (2.34)

r., + Kp = g~lp3 - GalO,3

and we have linearized the result in terms of .
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2.2 Basic Field Equations for Micro- and Macro-Structures

The three-dimensional equations of motion in classical continuum mechanics are

recorded here for the kth representative element (micro-structure) in the present configuration

pgN2 = 0 (2.35)

T*i.i + p*b*g*l1/2 = p* ,*g' 1/2 (2.36)

gi* x T* ' = 0 (2.37)

where

t= g*-l /2T*ini* , T*i = g*I/2*ijgj* (2.38)

The argument of all starred functions recorded above is (0a,03(k),4,t) and the equations are

written for each and every representative element (k = 1,2,...,n) which is assumed to repeat

itself in the present model.

Now introduce the following quantities for each micro-structure:

Composite Stress Vector Ti:

Ti(0'3(k)'t) f j Tai(0c,03(k),4,t)dt (2.39)
42o

Composite Stress Couple Vector SG:

20

Composite Mass Density p:

Pgf/2A p.g, 2d4 (2.41)

BASE



-20-

pgl(za) f f (V)pg* 2 d (a=1,2) (2.42)
20

Composite Body Force Density b:

pg 2b f p*b*g*1 2dt (2.43)

Composite Body Couple Density c:

P9l2 1/ 2 b P*g*1/2tdt 24

The quantities on the left-hand side of equations (2.39)-(2.44) are discrete in terms of the vari-

able 0(k) which are made continuous by smoothing assumptions. The composite mass density

PO in the reference configuration is also defined as follows:

PoGI/2 f ""IPo*G*Ir2d4 (2.45)

420

where po is the mass density of the micro-structure in the reference configuration. Since

p*g*1/2 = poG*1' 2, the continuity equation for the macro-structure is readi!y seen to be

pg 2 = poGIr2  (2.46)

Now consider equation (2.36) and first divide it by 42 and then integrate with respect to

4 from 0 to 42 to obtain the equation for balance of linear momentum for the macro-structure

42 0 ' + 2 oT d + 2 og2

1-- J p*(j + 4w)g*",2d4 (2.47)
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Each term in the above equation can be represented in terms of the quantities defined in

(2.39)-(2.44) except the second term which is the difference between interlaminar stresses

above and below the representative element divided by its thickness 42 as

I 4a aT*3  1 3(ae (+)t 3O '3k')T2 f d = 1 [T*3(Oa,3+l),t) - T*3 (Oa,(k),t)] (2.43)

Now we postulate the existence of the continuous vector function a(Oa,03,t) whose values at

03 = 03(k) are the same as interlaminar stresses T*3(Oo,3(k),t) and further approximate (2.43)

as the gradient of this function in the 03 direction. With this in mind we write (2.47) as

Tc.a + 2 + = P9 /2(j + zl*) (2.44)

To obtain the equation for balance of director momentum, (2.36) is multiplied by ,

integrated from 0 to 42 and divided by 42 to get

I 4a *a 1 2 aT3 d 1 2

142
f -2J p*g*Ir2 (4, + 44)d4 (2.50)

Again the second term in the above equation can be written as

1d4T 3  [4T.3]o 1 f T.3d4= T3 (.1

As a result we have

S + a - T3 + pg1/2c = pg"2(zl'' + z4w) (2.52)

which is the equation for balance of director momentum.
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Next, we consider (2.37), divide it by 42 and integrate with respect to 4 from 4=o to

4=42 and making use of (2.8)1.2 we get

f 1 gxT*a + g x T*3)d = 0

or (2.53)

I 2 42 dx *3 d4=0f- (g, + 4d,,) x T*adt +  f d x T"3 d
2o

and substituting from (2.39) and (2.40) we obtain

ga x T1 + d,, x S' + d x T3 = 0 (2.54)

which can also be written as

gi x Ti + da X Sa = 0 (2.55)

This is the balance of moment of momentum for the macro-structure.

Now we proceed to obtain an expression for the specific mechanical energy. Such an

expression for each micro-structure can be written as

1pgJ2 T* i "v. (2.56)

First, using (2.5) we write this equation as

p*g*I 2 * = T*a. (v + 4w)., + T*3 - -L-(v + 4w)

= T*a . V a + 4T*a .Wa + T*3 • w (2.57)

I Dividing (2.57) by 42 and integrating with respect to 4 from 4 = 0 to 4 = 42 will result in

42 t

. pg 1td - 9 1 T,3d4. w  (2.58)
SB2 2 o 2 o 2 T
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We now define composite specific mechanical energy for the representative element by

pgk = '2 f p*g*l/ 2e*d4 (2.59)

From this definition, the equation of continuity and other definitions (2.39) through (2.44) for

composite quantities, (2.58) can be rewritten as

pg"k=TV +SOw,t + T 3 w (2.60)

Since v = r, v. = (6 = = g, and w"--d - g3, we can further reduce (2.60) toI
pg29 = T i " ii + Sot W. (2.61)

which is the appropriate expression for the specific mechanical energy of the macro-structure.

II
I
I
I
I
I
I
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2.3 Field Equations in Component Form

We obtained the following field equations for the macro-structure (balance of mass is not

recorded since it is a scalar equation)

a I+ 0 +Pg 1 /2 b = pgln( + zlw) (2.62)I
Sa  + a - T3 + pgla1c = pglf(zlj + z3A,) (2.63)

gi x Ti + d x S, = 0 (2.64)

I And also the following expression was derived for the specific mechanical energy

I pgWr =Ti - i + S° w (2.65)

I By referring various vector quantities to the base gi we would like to write the above

equations in component form. First write

Ti = gl/2 rijg i  (2.66)

I o= Ogj (2.67)

SI= g1 '2 Sajg (2.68)

b = big , c = cJgj (2.69)

I where 'ij and S'j are contravariant components of composite stress tensor and composite cou-

ple stress tensor, respectively, ai is the interlaminar stress. Now substitute in (2.62) and

obtain

(gI 1/2 cjgj)., + (Cjgj) + pg2bgj = pg (V + zl%)gj

(gt12  aj).g j + gV2 Taj {j k a)9k + aO.3jg + CO j k 3)9k + pgI/2bJgj
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9 pg12(j + zli)gj

or

(gl/2 taXi).t + gl/2 '(kk j a) + Oj3 + Ok (k j 3) + P g1/2 bj

= p g1 /2 ( + z1 i) (2.70)

Equation (2.63) reduces to

(gl/2 SGjgj),a + aigj - g1/2 Tjgj + pglf2cjgj

= pg t (zl + z2ij)gj

or

(g1/2 Saj).a + g1/2 Sak (k j a) + Oj - g1' 2 r3j + pgl 2cj = p g 12(z + z2yj) (2.71)

Equation (2.64) can be rewritten as

gi X (g/ 2 1,cijgj) + xigi X (gl/2 Sujgj) = 0

or

g 12(zij + )i saJ)g i X g= = 0 (2.72)

since g * 0, gi x gj =jjg k and ejk is skew-symmetric we conclude that the quantity in

parentheses in (2.72) must be symmetric in i and j. As a result, the conser.ation of angular

momentum in component form is the symmetry of Iti defined byI
Ti 4 'ij + ,ioSaJ (2.73)

Iii = TO (2.74)

The expression (2.65) for the specific mechanical energy can also be written as
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pg 2 = g ,ijgj. + glf2 Sajgj . Wlgi

= gl2('EXJgj " g1 + SJwjI. + ?3Tg " g3 )

= g/2('TJgj V.a + ''3jgj .w + SJwjlo )

= glf2(TaJj~C + TJwj + Sajiwj)

We have now the component form of the expression for mechanical power

P 4p - qJvjI + 3jwj + SaJwjla (2.75)

An alternative form for mechanical energy expression is derived in which the rates of

relative kinematic measures will appear. Using (2.25), and (2.26), we rewrite (2.75) as

Ppd = J( 1 ja + coj) + ¢3Jwj + Smi[Xjp + ka(ja + coja) + ;.wj]

A= J + sM + (Tal + s 0)o~j + s .p

+ (T3j + qSlj)wj (2.76)

Recalling (2.73) and using symmetry of 7 i and skew-symmetry of wij we can write (2.76) as

P = lUJl~ja + Spjjp + T3Jwj + To3co3. (2.77)

By (2.25), we have

L go =10 + 0% , ip- ga = 'lap + Map (2.78)

Therefore

ga = g" go + ga" gp = 2flop (2.79)

= go = (2.80)

I
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In the last result we have used the definition of yp from (2.27). By (2.25)1.2 we have

ia g3 = T"13a + a3o (2.81)

g3 " g = Wa (2.82)

Therefore

go.3 = ga" 93 + 93 * ga = 13a + 03a + wax (2.83)

113a = k3 - (W8 + wc) = 2"03 - ("a + wa) (2.84)

Again by (2.25)2 and (2.27)

1

()3 3 9= g33  (2.85)

=33 = W3 (2.86)

and by (2.28)

ij13 = 1P (2.87)

Substituting from (2.80), (2.84), (2.86) and (2.87) in (2.77) we get

P = T°IU + T83(2"3 - (03 + w)) + SP + T3wa + T33 33 + T030)o3 (2.88)

which is simplified to

P = Trpyl + 2T03 + T 3 i33 + SIjfjKp (2.89)

If symmetry of Ti and yij is considered we can further simplify (2.89) and obtain

orP = -lyij + sP (2.90)

or
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( )aitj+ sc (2.91)
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2.4 General Constitutive Assumption for Elastic Composite

At this point we postulate the existence of specific internal energy in purely mechanical

theory which depends on relative kinematic measures yij and ica as defined in (2.27) and

(2.28)

- (Yijjc ) (2.92)

P = PW (2.93)

By usual procedures we obtain from (2.91), (2.92) and (2.93)

0j = P(i-- 0 ij -) (2.94)I~i alcK

Ic~ Sa= P 0 (2.95)

I Now the composite stress vector Ti and the composite couple stress vector S' from (2.66) and

(2.68) will be

Ti = PgI12( Oi. - ) .Lgj (2.96)

Ia = P912( iL (2.97)

I The coefficient pg1 '2 can be replaced by p0Gl /2 by taking advantage of the continuity equa-

tion. Note that by these constitutive relations for Ti and S a the balance of moment of

Imomentum is identically satisfied.

I
I
I
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2.5 Linearized Kinematics

For linearized kinematics let

r(Oa,e3(k),t) = R(0,0&(k)) + CU(oa,(I),t) (2.98)

d(0a,03(k),t) = D(0a,0&())) + e8(O a,03(k),t) (2.99)

v=n=e w=d=Et (2.100)

where £ is a non-dimensional parameter. The motion of the macro-structure describes

infinitesimal deformation if the magnitude of the gradient of the displacement vector eu and

the magnitude of the director displacement vector C8 are of the order of e << 1 such that in

the following developments we can only retain terms which are linear in E. The base vectors

gi are found from (2.7)2 as:

ga =Ra +e u,, (2.101)

93 d = D + e8 (2.102)

The corresponding vectors in reference configuration are:I
Ga=Rja , G3 =D (2.103)

We now proceed to obtain the relative kinematic measures yij and Icia. Using (2.103)2 and

(2.101) together with the definition of g and Gop we write

g4 = (Ga + Eu.a) • (Gp + EuG) = Ga + E(Ga • uP + u pa • Gp) + 0( 2) (2.104)

where 0( 2) denotes terms of order C2 in displacement gradient, where

Ga. u l + u.", G = Ga  ujpgj + uJgj • Gp

= Ga u7, pgy+ GO • u3 
10g 3 + UYagA• Gp + u3

1ag3 • Gp
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= uiGa " (Gr + eu).) + u3 i Ga • (D + e8) + u 1a(Gr + Eu.) Gp

+ u31a(D + e8) • Gp (2.105)

Retaining terms which are of the order of unity in (2.105) and substituting the result in

(2.104) we find

1 1 1( pa

yap = (gap - Gcp) = -- (up + upia) + 1 " +3Dp) (2.106)

Here covariant differentiation is supposed to be performed with respect to the metric Gij of

the reference configuration and instead of eu we have used u with the same assumptions made

for linearization. Similarly we can write

g03 = (Ga + eu~a) " (G3 + E8) = GOL3 + e(G a • 8 + u,, . G3) + O(E3)

= Gt + e(8 o + u 3Ia) + 0( 2 ) (2.107)

Again using 6 instead of Eb with the same interpretation we obtain

3 = 3a " (ga3 - G3) (8a + U3 I ) (2.108)

To find Y33 we write

g33 = (G3 + e8)• (G3 + e8) = G33 + 2e83 + O(e2) (2.109)

1
y33 = (g33 - G33) = 83 (2.110)

As for the measures rca we proceed as follows

Xa= g" d. = (G+eu.a) "(D +E8.1) = Aap + E(ulagj • D, + Ga" ,Jgj) + O(e2) (2.111)

where:
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u jI D p - uyt,(Gy + eu,,)' Dp + u3Ia(G3 + E8) DIp

=uY1,A.0 + u3 I Ap + 0(e)

Ga .8I j = 5', Ga (Gy + eu7 ) + 83 1pG a (G3 + ES)

= 8alp+ 83 ,pDcx+ (e)

Substituting these results in (2.101) and using the definition of r.,p we get

-u = k - Au = uujp + 8alp + 83pDm (2.112)

Now we obtain an expression for K3,x

3a = g3 ' d,a = (G3 + E8) • (D, + E8a)

k3a = A3a + e(G3 " 8,a + 8" D,,) + O(e2) (2.113)

We simplify each term separately

G3 -,8 = G3 " (VJggj) = 8yiaG3 " (Gy + eu,7)

+ 83
1QG3 • (D + E8) = g71aDy + 83 1aD 3 + O(E)

= V I aDj + O(e) (2.114)

8" DC = (8jgj) • (DkIaGk) = (8jgj) • D3 IaG 3

-A,(ygy + 83g3) • G3

-- A3[8'(G, + eu,) + 83(G3 + S)] • D

- 0(3) + A38TD 1+A38 3D3 = A38jDj + O(E) (2.115)

However, since D' = 0 and D3 = 1
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8'JDj = 8jD = 8 3  (2.116)

Substituting from (2.114), (2.115) and (2.116) in (2.113) and using previous notation for 8 we

obtain

3a = ,3a - A3a = 8JaDj + A 83 83 a + A383 (2.117)

To recapitulate the relative kinematic measures in linear theory are:

1

ap= - (Ualp + upla + u3
1aDP + U31pDa)

1

Y3= = "-" (u3 1a + 8a)
2

Y33 = 83 (2.118)

xup = A aui + 8alp + 83
1pDa

= 531a + A 83

For a composite with initially flat plates we can always choose our base vectors Gi such that

Gij = GIJ - 8ij and as a result Da = Da = 0 and if we confine ourselves to small deformations,

then all Christoffel symbols vanish and covariant differentiations reduce to partial

differentiations and equations (2.118) for relative kinematc measures will further reduce to

1
Ya= " (uMP + upa)

O= 1 (u3.. + 8 -)

(2.119)

*Y33 = 83

KP= 86.,0 I3a = 83,ci

In writing these relations it has been noted that Da = 0, D3 = I and A4 M 0.
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It is also desirable to find a relation between g and G, determinants of metric tensors, in

present and reference configurations, in the linear theory. We recall the following relations

glI2 .. 91g 9g2 g' 3  , G312 =G, xG 2 *G3

gx g2 =(GI + Lu1j) x (G2 + Cu,2)

= ,x G2 + e(U1 x G2+ G, X U.2) + 0(e2)

[glg 2g31 = [Ix G2 + L(Ul x G2+ Gx u,2)] , G3 + E81 + 0(02)

= G12+ e[GI x G2 '8 + U1 -G 2 x G3 + G3 x G1 'U.21 + 0(02)

= G1 2 + eG"12G 3 -8 + U., GI + G2'U 2] + 0(C2)

Retaining terms which are of the order of E and using the previous notations for u and 8 we

get

j(_L)1/2 -1+ 83 + Uala (2.120)
G

Now the equation for balance of mass will readily reduce to

p. = p(..L)1/2 = p(1 + 83+ Ua") (2.121)

G

and since in linear theory displacement vector u and director displacement 8 satisfy linearity

assumptions we obtain

p = pO(l - 83 - uala) (2.122)
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2.6 Linearized Field Equations

We use pertinent results from linear kinematics and usual procedures for linearization to

write the field equations in linear theory. It should be recalled in such analysis that g is

replaced by G, p by p. and Christoffel symbols are calculated with respect to Gii. By omit-

ting the details, the linear version of the equations of motion are recorded here

(Gla ej) 'a+ G/ 2 Tak (k i 1)+ O +k (k j 3 ) +pOG"2bipOG 2 (j +zl ) (2.123)

(G 1/2 Saj),a + G1/2 SO~ (k j J) + a& - G1/ 2 t3j + p, G1"2 ci p0 G"2 (zlY + zV6) (2.124)

-i = ci + A" SaJ = T (2.125)

For a composite with initially flat plies further simplification can be made. As men-

tioned earlier, G = I and all Christoffel symbols vanish identically. The resulting balance

equations for such a situation will be

Tj + Oj3 + Polb' = P(u + Z18j) (2.126)

SXj., + CO _-~ + pcJ = p0(zYi + z2v~) (2.127)

-i i = r'(2.128)
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3.0 CONSTITUTIVE RELATIONS FOR LINEAR ELASTICITY

For the representative micro-structure let

* ~y:, a 1,2 (3.1)

whereI

i c~I t  <(3.2)

and c&1 (at = 1,2) are material constants in associated layers. Now we proceed to calculate

Ti and S' defined in (2.39) and (2.40). First we recall that T*' g*1t2 T*ii g*

g2 = g12 ( +IA), * = gy + 4dy g3 = g3 and for brevity we omit the index a in rela-

tions (3.1) and (3.2)

I g1 2 T*ii -1 T'=-- T*'d4 gj 1--__2 T2

- 1j g 12 c(iygj dg = 2*d4

j0g 11 (c-'y4 + 2c'YcL'43 + i3y
42 o 23 j-

Substitute from (2.31), (2.32) and (2.33) in the above relations and get

T1 1 g
T' f g'l 2 (ci00't + 2ciJ'3y + cij33 Y33)gjdt

+ "g*1 2 [( )cJK'p + 13.cij 3]gj'd4
42o 2

=kl " f cij g 2 gj* d4 + 1 (Kcp + K .) f 0c l g*l 2 gj* d
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+ K3 a 12 1 Cij 3 g*1/2 gj* dt (3.3)

We calculate each integral separately, noting that

! g.1/2 g; = g1/2 [gy + 4( gk + d.,) + -Ld.g ](34
2g A 2g 34I gA/g (3.4

g*l/ 2 g ; =gl 2 (g3 + - g 4g3 ) =  1/2(1 + )g 3  (3.5)

The first integral in (3.3) is

FI Cik * 1. ~ 1g1  g1g dt f (cik*lg1/ 2 g+ 1 /2 g)dt (3.6)

The first term of (3.6) from (3.4) is equal toI
4a 1-2 cA d , 42i g1/2 97,_ f' ! ci ')l d + gj/2 A ~ + d, t) I cild4 + 2g 1/  c2 *  dc'k (3.7)

i and its second term can be written as, from (3.5),

I1/2 Cid + TA- 1 1 cO3kdt)
g 3 cgd +T (3.8)

i Combining (3.7) and (3.8) we rewrite (3.6) as

1 _2A .A 14.,1/2 f cij'*td + 2g91j ' c~/d + gl2 dt ctd

+ 2 dy I f2 ci*d4 (3.9)

The second integral in (3.3) is
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CijO g*1/2 gj 4 dt f (4c gl g7 + c'3 p g*' 2g3 )dt (3.10)

The first term of (3.10) from (3.4) is

I g1/2 gy 4~ clud~ + gl/2(AL k + d,.,) _.Lj f 2c'ud4

+ _" f 3C'IPd (3.11)

2g1/2  2

and its second term from (3.5) is

g2 g3(-L f 4c3ld4 + y- T2 J 2cdg) (3.12)

Combining (3.11) and (3.12) we rewrite (3.10) as

! Ig1/2 g f.. 4cJO A g~j f 2 1] 4 + g 1 d. _L f 2c~d4

S9 42 0 2gl/ 2 o 42 o

A f4I2+ *jal2 d.-. f c 0 d4 (3.13)

The third integral in (3.3) is

f 4cijg* 2 gj*d4 = g1/2 gj 2 ciJa3d4 + 2 /2 gj  id4

1/2d 4 A 1 4
-L fl d .. 

2c'wd4 + -i d7, Ti- J 3 d4 (3.14)

The last result was written by noting the development in (2.13). The results in (3.9), (3.13)

and (3.14) can further be simplified by recalling (2.9)3, namely d., = k4g and using the fol-

I lowing definitions and results.
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I Define

M = 41/42 < 1 (3.15)

a a2 41 O< 4< (3.16)

Then

f ka i ma1k*-l (3.17)

I Now (3.9) is equal to

11/2 1jM jl+ _ )j
g g mcik + 1M~cJI - ijkl + (~-M)C~ik]Im

41 [MCr 1 + MCN2- # C

in 3g n

+ (1-.m)(1 + l~ 41Ac4 k + 4I4 g 2m 4+

3g m (3.18)

(3.13) can also be witten as

in 2g 3 in2

+ X LIfcru ~~pl+Ax 1
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+ ( +m + 1A 1+mn+m 2 )CT + - L -

2mi 3g m 3  m 2

I + 2- ..... - m)]cP0) (3.19)

The expression for (3.14) is exactly the same as (3.19) except that (a,13) in (3.19) should be

I replaced by (a,3). These results should be incorporated in (3.3) to find an expression for t'.

Due to the presence of the factor g1/2 gj in all these expressions and also the equality (2.66),

we can find the constitutive relation for T'j. However before doing so we exploit the sym-

metry of cijkI to further simplify (3.3). Since ciiUP = c'ijp' we can write

IC1jp~ ciiPCZac = c" 41cap (3.20)

I Therefore,

cijC K a p = 2 + KpaU) (3.21)

In view of (3.21), now we write (3.3) as

76 f~ gjd ih- fc2 g gj* 4 d4 (3.22)

I With the explanation presented above, now we write the constitutive relation for rij:

I+ (l-m)(l + 2±!n 4A )cPiic + X1 (l+m+ 41A lCPW)ni2I4m g 2m 4lm+ 3g m

il& M41  ..C3

3g 2 3 8-
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+ 1(l-m) 41A l+m+m2 )Ci" + 4 1

2m g 3+- m 2

+ 41A (1. . m)c!})1Cja (3.23)8 M
If we further restrict ourselves to small deformations of a composite with initially flat

plies, equation (3.23) can be simplified to

Ti (mc" + ({-m)c'W)yv + jbmc j 1 M + - p C )KIa (3.24)

Of course in the above equations no distinction should be made between covariant and contra-

variant components of tensors. Using (2.114), equation (3.24) can be written in terms of dis-

placement vector u and director displacement vector 8, hence
4 1 1-m 2 Ci 2) } K

i j= jci + (1-m)c 1-i 43 + F (mc-(y + -i--"

2 in

{mci(P + (1--m)ci (2)p)- + u+a) + 2(mci(A + (1-m)ci%)(U3.a + 8a)/2

(MC(3 (-M)C5)2

30+ (i3 + (l-m 3) + T-' {mc + -L 1 (325)

IUsing the symmetry of cijk/'s (3.25) can be written as

j= (mci1  + (l-m)ci, )A}uc + (mcija3 + (-m)C}')u 3..

I + (mcj + (l-m)ci(j)8a + (mci% + (l-m)c2)8 3

+ L (m( 1 + (1-mi2) } a2 u { m ki t + m

I = {mci( + (-mi)ci(j4)Uk. + {mci3 + (l-m)ci)8k

I
1 BASE



Wpm 77 7

-42-

+ (()+ (1-r 2) cii)ia(3126)

The same steps can be followed to calculate S' and we record the procedure here KS

Fa I Fa

- t g112 &.jkILf gj d4 = 5~ l/2((XJ.P + 2caj?~3 .y

+ j ca 3
3)gj*d4 = ykI 42 1 4g*1"2 caijklgj d4 + K*, T~ g il2 a1gd (3.27)

T7his is basically the same result as (3.22) except that i has been replaced by cc and the

integrand has been multiplied by 4. The first integral can be reduced to the following by

referring to (3.18)

1 / 2 c z j2l* 
g.9(- [m"*I+( -M)c 1fl+ - [nmcf*+( [MIM)C22j J

2m 6g Mn2

1 1g

Similarly the second integral is simplified and by reference to (3.19) the result is

l/ 2.( [icfj' + (_L _ M)c'JP]j + - [cJ + (-L. a
3 M2 8g M3

m + +1 +)4_4

? g1/2  mj(- -If 1'Ao

gj( + 7 )ai + c i+ L j(+IM

3 M2 8g Mn3  4m3  log in4
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Again it is seen that because of the factor g1/ g and the relation Sa = Sqj g112 gj we can

readily write the constitutive relation for SaJ, the result is

sqJ= 41- (mc1tjk1)(l + LI) + 41 L " + l

S- 3  8g1  i--m3  i-m

1-+ 1_3t, )Cpj + 4 41 + I_4 j )C2P')},k1

+ 2 m m2  3g 3m 2  M 3  8g

+4 1_ +. IA 1-rn3* + 1 _ A nlq 1A 1-M'4)je
I 3 8g 4 lOg ' 3m2  8g m 3

+ 4)I( m4 + 41A -M )c2a ) c, (3.30)4M3  log m

This is the general constitutive relation for Saj in linear elasticity. If, as before, we confine

ourselves to small deformations of a composite with initially flat plies (3.30) can be simplified

to

-- m 1 2( J +2 crJ1 )lcp (3.31)1 t1 (MC I + m C2 f)k1Ir + r " m2

with no distinction between covariant and contravariant tensors. Once written in terms of dis-

Iplacement vector and director displacement and simplified as done in obtaining (3.26) we get

1 l-i 2  + 1l -2
2m 2 m

1 42(mc' + M cj*)8Lft (3.32)I
As the results of this section indicate, even in the simplest cases of small deformations of

an initially flat composite (composites with flat plies) higher gradients of displacement vector

become significant and they appear in the constitutive relations for composite stress and cor-

I posite stress couple. As defined by (3.15) m is of the order of unity, 41 and 42 are usually

I small lengths; however their products with components of cijk/ and even the product of their

1 BASE
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I highw powers with elastic consmants may be indeed significant quantities, in which case we
get contributions to rij and S,,. In the trivial case m = 1, 1 42 -+ 0 we get

Iti c= y Sj r 0 and the equations of linea elasticity are recovered.
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4.0 COMPLETE THEORY FOR LINEAR ELASTIC COMPOSITE LAMINATES

The results of sections (2) and (3) are combined to obtain the complete equations for a

linear elastic composite laminate. However, before doing so we should derive appropriate

expression for p., zl and z2. As before, we assume that the representative micro-structure is

composed of two homogeneous layers with respective densities p, and P2 in the reference

configuration (p1 and P2 are constants). Recalling equations (2.45) and (2.46) we write

1/2 = poG1/ 2 = 42 P *G *1 2 dE (4.1)

Now by (2.13) we have

= G112(1 + -2.) (4.2)*G*I2G

where A is understood to be the sum of two determinants similar to those expressed in (2.14)

except for substituting gij by Gij. We have

[p, 0 < 4, < 4,1
P 0 - 1  P2 41 < 4 < 42 (4.3)

Substituting (4.2) and (4.3) in (4.1) and using (3.7) we set

I A. l1+m A)lmp(4)

P0 = (1 + -1--)mpl + (1 + 4m- ' 1A)(-Mp 2  (4.4)

Of course the composite mass density p is related to p. through the equation (2.122).

We proceed similarly to calculate zi and z2 using their definitions in (2.42)

P9I/2ZI = p G"12Z1  kL p:G*1/2d4 45pg PG,~d (4.5)

* Here again the result has been linearized in terms of 4.
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pglz 2? = p0G1 zz = '2 JpoG*"ldk (4.6)

After substituting from (4.2) and (4.3) in (4.5) and (4.6) and using (3.17) we get

1 A. (1-m 2  
1A 1-n 3

poz = L [0 + -jIA)mPI + + -jA -L--)P2] (4.7)2mGI 3G m2

Poz 2 = - 2 3IA" (-m 3  34 1A lm 4  (p.2=3[(1 +--8 )mp' + (- 2  + -8G m3 )P2.] (4.8)

For a composite with initially flat plies (4.4), (4.7) and (4.8) are reduced respectively to

PO = mPI + (l-M)P 2  (4.9)

Pz 1 = 2-(mP + - P2) (4.10)

2  m

-2  - (mpP m2 2) (4.11)

To formulate the complete theory it is also worthwhile to dei-ve a relation between the

director displacement 8 and the gradient of displacement vector u in the 03-direction. In

order to derive such a relation we enforce the continuity of the position vectors p and P*

between two adjacent micro-structures. Recalling (2.1) and (2.2), we have the following rela-

tions for the kdh micro-structure:

p*(0a,03(k),,t) = r(Oa,030),t) + 4d(Oa,O30),t) (4.12)

p*(a,03(k),4)= R(Oa,03(k)) + 4D(Oa,03(k)) (4.13)

Now in order that position vectors p* and P* be continuous on the common surface between

kih and (k+l)3' micro-structures we should have

p*(o1,3(k), 42) = p*(eao3 +l),0) (4.14)
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P*(Oa,e3(k),4 2 ,t) = p*(ea,&(k+l),O,t) (4.15)

Using (4.12) and (4.13) we can write (4.14) and (4.15) as

R(Oa,&(k+l)) = R(Oa,03(k)) + 42D(oa,03(k)) (4.16)

r(0a,03(k+l),t) =r(03(k,t) + 42d(O),&3k),t) (4.17)

Recalling (2.98) and (2.99) and identifying Eu and e8 with u and 8 as before we conclude

from (4.16) and (4.17) the following

u(Oa,03(k+=),t) U(0a,03(k),t) + 428(0a, &3(k),t) (4.18)

or

8(0,03(k),t) = {u(o,3(k+l),t) - u(Oa,O3(k),t)] (4.19)

By smoothing assumptions and approximating the right-hand side of equation (4.19) as the

gradient of the displacement vector in the 03 direction we have

8(0,o 3,t) = )u(Oa'03) (4.20)0-3

In component form we have

8 = 8'gj = (uJgj) = uJ13gj  (4.21)

or

8j =u113 , 8J = uj13 (4.22)

For a composite with initially fiat plies the equation (4.22) reduces to

8j = Uj. 3  (4.23)
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With this simplification, equations (2.119) reduce to

i= -- (Ui.j + Uj.i) (4.24)

Y- ja = Uja3 (4.25)

Using (4.22), equations (2.121) and (2.125) are also reduced to

PO = p(' G)1/2 = p(l+uJj) (4.26)

p = po(1-uJI j) (4.27)

The constitutive relations (3.26) and (3.32) for cjj and Saj for a flat composite are also further

simplified by using (4.23)

,rij 
= {rlli) 4= (1-m)ci $)Uk c (= {ni ) 4  =I 2) Ukua3 (.

(m~jJ (-nc~~u,+ (mc,) + - ch ~ (4.28)

and

S.j I I ... (')_ + l C)Uk.1 + 4 MC0 - c20)u03 (4.29)

Now we can write the field equations (2.113) and (2.124) in terms of the displacement vector

u and its gradients. It should be recalled that the resulting equations are the linearized field

equation for small deformations of a composite with initially flat plies. These are the counter-

part of the Navier-Cauchy equations in linear elasticity. The appropriate equations for a gen-

eral composite will be derived in later chapters. Using (4.9)-(4.11), (4.23), (4.28) and (4.29)

we write (2.123) and (2.124) as
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{mcI() - + l-m)CI('J + (mc( 1 + 1-m2  I(

ImcI+1-m~kJu 440 c ~1 Uk.P3a

+ ay,3 + [mpI + (l-m)P2]bj = [mp + (1-m)p 2]Uij

+ - 4(mip, +p2)Uj,3 (4.30)

and

1 2  m (2) UQ+3 M2 mc a( p iP 1-m3
- l mc(j + m ± aj cUk + T"m& + ' ca(]j~k133a

'1''2 1-m 2 i 2

2m

1 l'm----- 3 P2)iaj.3 (4.31)

At this point we may notice that an ordinary continuum (a single material continuum) can be

regarded as the limiting case of a composite laminate when 41 = 2 - + 0. Therefore, we may

anticipate to derive the equations of linear elasticity by letting m = 1 and 41 -+ 0 in equations

(4.30) and (4.31). Doing so, equation (4.30) reduces to

CcxjkaukJ + Oj3 + pbj =- Ouj (4.32)

where subscript and superscript 1 are dropped because we have only one material. To sim-

plify equation (4.31), first we recall the definition of c in equation (2.44) and notice that by

the mean-value theorem, c -- 0 as 42 -4 0, hence

aj - C3jkIUk.1 = 0 (4.33)
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Substituting for aj from (4.33) in (4.32) we get

CajklUk.a + C3 0kgi3 + pbj -piij (4.34)

and combining the first and the second terms we get

cijjctUk./i + pbj -- piij (4.35)

For a completely isotropic continuum

cik = .ij + (6ik8i + 8i1jk) (4.36)

I where . and j are Lame constants and (4.35) reduces to:

I .Lguiu + (+I)ujij + pbi = pui (4.37)

which are the equations of motion for an isotropic media.

For the case of the composite laminate we can also eliminate aj between equations (4.30)

and (4.31) to obtain the appropriate equations for displacement vector u. First we do this for

a static problem with no body force. For such a case we let

Ib = c = u= 0 (4.38)

in equations (4.30) and (4.31), hence

I (mc (1-lmc()u,LI {mca(1.! , l (- 2 + =(mc(Ij + (I -,jjj k.u + .M6t' + c(&} Uk.03a + 'Oj = 0
m 2

E and

II

I
I BASE
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L C(1+ I-m2 Cc(I2}Ukt + L- (  + -m3

j - {mc3(jk)3 + - ) Uj - {mc]'ka + m cfk)a)Uk3 =0

Eliminating ;j between these equations, we get

{(1) (Il0_m)Cc(t}d uk1 + me(1) - +l-m 2 cc-)41I p
m2

I +I C - 2

+ {rnc42 + (1-m)c3.)u,g 3 + T {mc4j' + m k)a}Uka33

S + m 3 m

By combining the first and third and also the second and fourth terms of the equation (4.39),

we get

(M .(1 (1))_( ) 1- m  C(2)

IL + - (c(

{mc 1 J + (l-m)ci][)uk.r, 2 mik + 1-n cij )a k~a

2 m

-- T jl+ m jjI )lrhdo3 - 3 •MOU + M3 CajiP) k,.33

This is a fourth order partial differential equation for displacement vector u. Now we apply

this equation to a composite laminate whose micro-structure is composed of two isotropic

layers. For such a case we can write

Cij-- = Xl 8 ijSk/ + j1(8ik6 j/ + Si/jk) (4.41)

IC,2J, = 28ij k/+ P92(8ik8 jI+ Si/ jk) (4.42)

where X, and g±i (i = 1,2) are Lame's constants for the respective layers. Introducing equa-

5 tions (4.41) and (4.42) in (4.40) we get the following for each term:

BASE



-52-

II(mc + (1MCUi = (l~k + t41(Ukjk + U.)

I+ (1M(2 j+ 92(Ukjk + U~d

I = frn(XI + j±1) + (l-M)(X+92)Ukj + (M9.1 + (l-M). 2)Uj11  (4.43)

Mcik~(+1-rn~ 2 k) a)uk1 Oj = MI1i~a+ 91L(8ikja + 8ia8j))Ukim

I+ (1-rn 2) (X8i~ + 112(8ik~ja + 8ict~jk) Uict

I M(X88aUpjt) + Mgl1 (8Sk 8 jaUkicx + so. Iskuk.cz3)

I ~(1-rn2)1-n
+ - ) 2 (51j8aup~) + - 92(8 ik8jaxUkia + 8Pa8jkUki3)

=(niX1 + (M) X2) Ucaja3 + (nM9 1 + p.M2 2)8
1 ukk 13

+ (m,+ (1-rn 2) Il2 )Ujaa3  (4.44)

I(inC41 + (lm)Ca(jl)Uk.W~ = M{Xl8aj&4 + 91(8akjclj + 8cd~jklUk~la3

I+ (1-rn 2) (X8jk 2(8 ak5 jl + 8oU8jk)) Uk

I nXl(8 ajuk,) + niuL(U,aj3 + Uja3)

I+ (IM ;L(BajUk~kcL3) + j±2(Uja + Ujcxa3)

(niX1  X2)Ba*uka + p(M1 + m 9 2)(Uaja 3 + jo= (4.45)
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M2c + i*-inpa3 = MX8jkP+ 48kjp+ &cmP~jk))Uk.Wc3

I+ 1-rn 3 (X2 8C1iko + IV2(8ak~jp + 8 upO8jk)) Ika

I = XI8jUP.Pa 3 + m±1(8jpu,.0.3 3 + Uj.=3 3)

1-Mn3 X8qjP 3 + V8PaW3+ Uj~a33)

=(nX + -3 X2)8.ju.. 3 + (MV1 + I-i- 92)(&jpUapaC33 + UjW) (4.46)

1 Substituting (4.43)-(4.46) in (4.40) we obtain

21 rnL +)2)a + (I + m 2)(8jccUkJ=3 + Ujaa3) 21

I ~+ (m(X1 + 9i1) + (I-M)(X2 + p.2))ukkj + (M9~i1 + (1-M). 2)Uj11

~l (1-r 2) m1 J±2)(Ugjt

IMX + - X2)8.juk.3 -- M1+ - 9)U~o3+U.

3 1-rn+m )~tjP,0

21-j("ni' + 2-- 92)(jpUapa~33 + Uux 3 3) =0

I Now we introuce the following definitions in the last equation:
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2L12 m + (-mA 2

12 -- M91 + (1-m)9 2

I 1 = MXI + I- 2 X
m

(4.47)

I12 = m -n + -M2 t2.
m

I ___-m__'112 
= m.I + r ,2

IMI m2

912 = M 91 + -;'2 A2

The result will be

(X12 + IL12)Ukikj + 9,12Uji/ + -)Ll2ua 
+ P[12(SjaUkka3 + Uj'aoL3)}

I1 2 -a~ a 2L P:12(1k1.3 + Ujc=)
124

-- %128ajUp03 - - 912(8jAUo,33 + Uj,=33 0 (4.48)

The above equations are counterparts of the classical equations for linear elasto-static prob-

lems in the absence of body forces. We need to write these equations in the expanded form.

IThe result would be three scalar equations as follows:

I

I
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a u+ au2  aU3  922U a2u1  a2u,
~i+J i)-j-(*' 2 a0 3  +e ao?2 + eO

a2  U1 +U 2 + a2  aul aU2  au3
W~~aO a ea0 2  ae)1 a03 ( 1ae2 i

.u3 a2u _ 41 a2  au , au2  au3

_ 1 _
2  au1  au2  1 1 a a2u + a2u1

P112 + (- - + )- L2 ae2ae 2

- a12 ai 2 2 -103 (4.49)

L This is the first equation for j -- 1 which can further be simplified a

(X2+ 12 - i)+ ea3  a?1 au2  aU2 a 1  a3 all U

+ (P - ( -u3

T~91 2 , -,2 e,

I2 3 a2U aU 2

142 + +(4. 0)

I3

The second equation will be
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a aU au 2 au3  C,2 2 U2 + u2
OL12 + 12) ( + 2 O) + 12(~ a02 M2 N2

41 a3 U3

+2 (P12 -X12) W20- 2 u u
(2  - 3

- - I "T 2 2 a2 - ( -DUI +  " 2)2 2 3
3 TO 32 au1 a02

- 2 a2 2 " ( 2 +0 (4.51)

3 32ae W2o+ a022

And the third equation is

a lll a U2  aU3  a2U3  a2U3  
2 U3(X12 + 912) -(- -

-I a2  . u1  U2 . - t atU3  a2U3
2 1 ao 2

3 a2  21  u2  a 3  2.1 2 2 )2U + W27"U3+ 2U

2 a 2 au3  N2 N3N a

-- P12 (-- (- + - 3 = oL

or

BASE



-57-

± aU1 + U2 + U3 a2 U3  a 2 U3  a2U3

(X1 +91) ( u~l ) + 1 2 -12+ 2

0 a 3 a

2 U3 T 2 + (4.52)

For future reference we will also calculate aj for static problem in the absence of body

forces. The preceding results are used in conjunction with equation (4.31) which has been

simplified for such a case and reproduced before the equation (4.39). From (4.45) and (4.46)

and (4.47) we have

J {mQt + (1-m2 ) C("t)Uk, -= 112 Sajkka + l1 2(uaja + uj.=) (4.53)m

(Mccp 1- 3  (2 cPu) - 1 2 8ajdiUP + 12(ux.3 + uj,.) (4.54)

Using (4.36) we get

(mc4ja + (l-m)c42)}Uk,1 = IIma + (1-m)A21 6 kUk/

+ Im. 1 + (l-m). 2 t8 3kj/ + 831&jk]Uk,1 = X12 83jUkk + 912(U3,j + Uj,3 ) (4.55)

(I -M2)

nC + (1C-r 2 k2.) c4 3 = Xl283jkik.3 + 1l2( 3 ja + 83a8jk)Uk..31 m

= X12 83jU. 3 + g 12 8jaU3.3 (4.56)

Substituting (4.53)-(4.56) in relation for aj we obtain
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j -- 1283jUi.k + 912(U3j + Uj,3) + = ['12&3jUa.a3 + ig12 8jjU 3 , 3 ]

-"22qj~kkct + I1l2(Uu,% + Uj,=)]

1 a[28qju,1 + 'l2( 6 jlUl 3 + u= 3)] (457)

Writing down the components of aj separately we get

U l + l C+g u3  41 a'BU+ aU2 aU3

°y =912(- - T - a T12 +12 do

N a aU au2  au1 a2u01*3 2a 2 lN3

au1 aU2
= a2  aU a 41 aU a2  U 1

F12 NJ BN2 2 u1 N+ au)

au aU3  -
2u3 _t-3BU .

-='1(K + ) + TP12 - 1) 1, 2' 12''a 'a)  % +
a2u1  a u a2 1 02 U2

T -12 -) + aU 2)

3 2u a32u1  - (4.58

Iu a 2 all CI2 41 a 32u 1  au2

-~ =+ ) + " 2 -2 12) - - (12 (4)

U ae3 ae2 3 2 N 2 U2
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912 a 2U2 + 2 -? - 212  "U1 +u 2

2 2 3N2
32 -)2U2(" 22 +  "0 1 (4.59)

1~43 =1.
03 - %.12Uk.k + 2

12U3 ,3 + L-- I 120x.3a + U3,l) -3 12U3.=3

= ' I + aU2 + 2 3  'U+ 41 a Uu 2
+12( -w + 3 + 2g 12 - -2 12 + L +

1 au+ aU2 ) 1 9 a2U3  a2U3

2 = u -'2U3

- 3 '2( 2 + W b

0Y3 =X12411-- + ±!-) + (X12 + 2g,2) 223 + Lj- CX' - P112) a (_.w +2U-*I 2 0u +D II N ul 2

41 a2 U3 a2 U23 41 213 + 2U3

- 11 2 a2 3  g12 = 3 - + -32- (4.60)

The constitutive relations (4.28) and (4.29) for cij and Scj for a flat composite are also

simplified here for a composite laminate whose micro-structure is composed of two isotropic

layers. Using (4.36) first we simplify different terms of the expressions (4.28) and (4.29)

(nmci) + (1-m)c()U t = {mX, + (I-m)X2} 8

+ (mg1 + (1-m)9.12)(ik8j. + 8il jl + Uk.t

- i128ijUk.k + 9 12(Uij + Uji) (4.61)
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where (30.47)1.2 wre used.

(mcOL + (qm2

=18aU + P[2Uj+ Uj,a) (4.62)

(mf cjL + m Cd)k3="28jWia + 910 ja ilj)kU

='Z128iUa,a3 + P112(8jcxU 1oL + 8iaUja3) (4.63)

(n1cd$0+ 2 Z"3 Cdj) Uk.p3 = X128j~kpUk.p3 + I.L12(8ctk~jp + 8ap~jk)Uk,p3

= 71128ajup 3 + ji12(8j~ua0 3 + Uja3 (4.64)

Substituting (4.6l)-(4.64) in (4.28) and (4.29) we obtain

Tj= X128iUuk + IL12(Uij + uj11)

+ PL[128ijUa3 + JI28a~3+ 8iaUja)] (4.65)

sa1j L -18xjk + JI12(uc~,j + uj.a)]

2

+ 1 IX2qjpp + Ii2(8jpua,P3 + Uj~a3)I (4.66)
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5.0 LINEAR CONSTITUTIVE RELATIONS FOR A MULTI-CONSTITUENT

COMPOSITE

In this section we assume that the representative micro-structure is composed of n layers

with different constituents. For such a micro-structure we let

IQ = cj)'j% (a =12.n)(5.1)

where cA1 (a = 1,...,n) are material constants in the associated layers. As before the variable

4 is designated to change across the micro-structure whose thickness is assumed to be . It

should be noted that although the micro-structure is composed of n layers, 1, is still supposed

to be a very small number. The range of variation of 4 in the 1th layer of the microstructure is

from 4_ to 41 where 1 = 1,...,n and o = 0. This convention is adopted due to its agreement

with the special case of a two-layered micro-structure which was studied before. We further

define (n-i) constants ml ... mn1 according to the following relations

j = m-n (1 = 1,...,n-1) (5.2)

As a result of this definition the thickness of the I h layer of the micro-structure is equal to

(mrm)l.1)4 where I = 1 ,...,n and mo = 0, mn = 1. The composite stress vector Ti and the

composite couple stress S' and other quantities are obviously defined over the whole thick-

ness of the micro-structure. For example we have

i T*id4 (5.3)
sti= In

4n f T*Qd (5.4)
0

In order to derive appropriate constitutive relations we make the following definition.

Let
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a =a for <_ < < (1= 12,...,n) (5.5)

where al's are constants and o = 0 as noted earlier. The function a is piecewise continuous

for 4 e (0, 1) and we can evaluate the following integral

1~ 1d E 1 n at (Jt -+1_ -. (k*-1) (5.6)

Using definitions (5.2) we further simplify (5.6)

1 4. 1 1 n 4! n
4kad4- = 1= amk+]. ak+f - k+l amk+]-mk') (k # -1) (5.7)

4mn m k+l ~I 1 1 1- n1 1

where m. = 0 and mn = 1. To simplify the final results in constitutive relations we first notice

that the integrals which appear in these equations are the weighted averages of the constitutive

coefficients. So we adopt the following definition

= J- 4 " 4kc~Pd4 (5.8)
0

which by (5.7) is seen to be equal to

n

= . Z c ( ) -m 'i-' (5.9)k+l ~

We use the same contravariant or covariant index notations for I and c. However, the weight-

ing number k is always written as a superscript in parentheses. Whenever the covariant com-

ponents of constitutive coefficients are used, the layer index (1) is also written as a superscript

in parentheses. Recall (3.22) which for the present situation can be written as

' = YkI c ij g" 2 gj" d4 + 1ct 4'- f 4c' g"a gj'd4 (5.10)
Tn i 0

Combining (3.4) and (2.9)3 we obtain
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go1/2 g* = g' 2 (1 + )(g + (5.11)
2g

and (3.5) reads

g*l/ 2 g* = g1 /2 (1 + -kg )g3  (5.12)

The first integral in relation (5.10) is simplified using (5.11) and (5.12). We have

1 cijk g*1/2gj*d = J (cik g*112 g + ci 3kl g )*
00

=g g1 / (1 + -LA 'k/d + g1/ 2 f4(1 + )ci2lgd4

+ g1/2 g3  ! (1 + &g

= g2 d4 + (1+" 01 + -)cik/dt) (5.13)
Emf 2g 0 2g

Now we use definition (5.8) to simplify (5.13). The following expression would be the result

I' term in (5.10) = gl/2 g.{i(O)ijkt + - I + Xj(I(1)iokl + - 1 2ikl)] (5.14)
j2g 2g

The second integral in (5.10) is also simplified similarly

f 1ckg" ggr"2 (c4 g; +C g;)d

l 0 2g 0 2g

+4n l g/ 2 (1 + 2 gA )Ci3ag3 d
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g12 f 14"" + .g)ci~ladt)

gj2g(-. 1 4(l + 2g -)c'j(d d+ X~~j l+

(5.15)

which again by using (5.8) is simplified to

• "(1)ij+x L 1(2)ijIcz 4 j A 1(3)ipkla

2nd term in (5.10) = g 12 g()ijia + 2g + + 2g (5.16)

Substituting (5.14) and (5.16) in (5.10) we get the following constitutive relation for T'

T = {[I(O)iiki+ 2g + XJ(AI()ipkI + -L i(2)iI3kI)]y i

+ [1(1)ia + -61 +(2)ijla +X(I(2)iPIa + _L I(3)iPIa)]K 1I}glI2 gj (5.17)I2g 02g

The expression inside the bracket is obviously the constitutive relation for 'tij . Hence

Tii = ii(o)ijkL + 6g + XI(ioI +A l 2)iik,)l
2g P2g A

+ [i(1)ijla + _Lg i(2)ijlc, + Xj (I(2)i1P1a + 2-' i(3)iPSa)]g/a, (5.18)

2g 02g

The same steps are followed to derive the constitutive relation for the composite couple

stress Sa . By (3.27) we have

Sea = Ak 1 g*l1 2 cajklgj*d + Kip f 42caJi, g*l1 2 gj*d4 (5.19)

I which can be reduced to the following form by exactly using the same procedure

I = A((ckl + - i(2)ajkl + X (i(2)a(kI + A O
2g 2g

+ 1(2) a jA3 + 'A 1(3)aj43 + 4l(3)a11 + - I(4)a*l)]Kip) g2 9i (5.20)
2g 2g
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Subsequently the constitutive relation for S'j would be

saJ = [I(1)aJk + A i(2)ajkl+ (I(2)a4i + _L l(3)a k)]yk1 al=[I1)zkI+2g 2g

+ [l(2)aJip + _L l(3)ajlP + X4(l(3)a4 + -L l(4)a.#P)]jCtB (5.21)

2g 2g

For small deformations of a composite with initially flat plies, the foregoing equations

are further simplified. The resulting relations are recorded here:

t ij = I(0)'ijkl + l(1)ijktg/a (5.22)

Saj -I(I)ajk 'k + l(2ajlp 1143 (5.23)

with no distinction between contravariant and covariant components. In terms of displace-

ment vector u and its gradients these equations can be written as follows:

Tij = luk + I-Mug.3 (5.24)

Saj =I-QUk, + I (2 u1Ul.0 3  (5.25)

Using (5.9) the constitutive coefficients are written in the expanded form

I c~~Im9)--m )

t)1

ijk T n Cij(m 2 - mr21) (5.26)

To recapitulate, diQt (r = 1 .. ,.n) are the constitutive coefficients of the micro-structure layers

and mr'S (r - ,.....n-l) are dimensionless constants related to the thicknesses of different

layers with mno = 0 and nmn = I.
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teIf the micro-structure is composed of n isotropic layers, we can write (5.26) in terms of
teLame's constants of various layers. In fact, we have

Cijkl -r) jskl + p~r)(aikajj + 8uj) r = 1.,n(5.27)

For such a case, the relations (5.24) and (5.25) are written in expanded forms as follows

n n
'Cj Ukjk&jj I X(r)(mrlflr..) + (uij+uj~i) 7- g(r)(mr-mr-l)

n

or

n n n
j 8 ij 7-(r ) Amr + (uij~+uj3 ) 4n 8~AU~~ rI~

n
+~ ' (U~3j+ja;ia)Z (rAr (5.28)

2 "j cz8.jk~uk. I Lr~ + (8Sjl~ + 8awjk)UkL1 7 (r-2 r-- I r-[

n n

SC~~~j 4n8jkk 7-)rAmf + (uaj+uj.a) X A""r2
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where for brevity we have introduced

AmP= mfP - mf r = 1,...,n (5.30)

and in the above relations p = 1,2,3.

In order to obtain the complete field equations for a linear elastic composite whose

Imicro-structures comprise n layers we should substitute the constitutive relations (5.24) and

(5.25) in the equations of motion (2.123) and (2.124). However before that we should obtain

appropriate expressions for po, poz t and poz2. We assume that the micro-structure layers are

I homogeneous with densities p (r) (r = 1,...,n) in the reference configuration. Recalling (2.45)

and (2.46) we can write

pg = p G11/2 poG*l2d (5.31)
0 -0

where

p= p (r) for 1-1 <  < 4 (r= 1,...,n)

and (5.32)

I =0

Using (4.2), (5.32) and (5.7) in (5.31) we conclude

I f ( I + )pd4 ="I X pr)Amn, + ' F. p (r)Amr 2  (5.33)

We will proceed similarly to calculate poz' and poz 2 using their definitions for the present

situation. By (2.42) we haveI
I pg l/2z 1 = poG"/2zl1=f n pGt/2dF (5.34)
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W7 P.G/2, -L G* -

pg'z 2  = 1 2po (5.35)

Similar to what was done in the derivation of (5.33) we write

P~z1 = "-(I. J( + -I-)pdp + - prAm (5.36)
4n 2G 2 ~i6G i

and

p 4= 2(1 + y)Pdp = . + ,,G-- + p (T)(r3

For a composite with initially flat plies, equations (5.35), (5.36) and (5.37) are reduced

respectively to

np0 0 p p(r)Amr (5.38)

P z : = " n (5 39)

=1 0nSpoZ2 4n 1. P2~T p(r)Amr3  (5.39)

I Now we can substitute (5.24), (5.25), (5.38)-(5.40) and (4.23) in (2.123) and (2.124) to

derive the linear equations of motion for a flat composite. The resulting equations are

recorded below:

i(jI/Uk.1' + IQ)JuIa. 3 + bj po()AmT + Oj.3

n 1 n
j 1: P r)Am, - n~Uj 3 1 P(r)Aff2  (5.41)

_-1 0 +2 T-- 0

I

I BASK



-69-

14641 + Ia(1)U 1. 3 + a(j - l4Tuk - 14u1.03

cj p(r)An n 2 W orArna0 o prr + +1 4 j.3 . I () (5.42)

r- 1 0 2 r-- 1 0 3 r--

The appropriate differential equation for the displacement vector u is obtained by elim-

inating cyj from equations (5.41) and (5.42). For static problems with no body force these

equations reduce to

OlUk.la + lak(' ka31t + aj3= 0 (5.43)

I( .jUkja + I&(2Uk.aP33 + Oj - I4jok)Uk, - I4jk)PUkP3 = 0 (5.44)

Eliminating aj between these equations, we get

IMuk0  + Ia+u IjOk)lUk,13 + I3(jk)Uk, 33- I-1)Uka3 - Ia(2jUk.al33 = 0

or

Ii'JukIl + I(AIjuWP3 - Qbik.ld3 - PUkaP33 = 0 (5.45)

This is a fourth order partial differential equation for the displacement vector u. The constitu-

tive coefficients I 0,1,2) e already written in expanded forms in Eqs. (5.26).tive i)k -(,12 arealed

For a composite laminate whose micro-structure is composed of n isotropic layers we use

(5.27) and (5.26) to rewrite (5.45). The result is

n n

Sijfi/Uk.i 1! +(r)Arnr + (8ikjl+ si/Ajk)Uki 9(r^mr

1n n
+ " ki3k.i03 E k(r)Anr 2 + (8ik j3 + 8iPjk)Uk.i13 r]

r=l

2 -I r-nn n

SX(rAr + (8a5kj + 8aJk)UkkX3 7 9.Am I
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-4 u18.jkPUc.P33 T' X(AM?~ + 8aj + 8aSOkP -I(~?

n n T

Ui i X (,)A iri1  + njJ Y fl r

U%03 I X() + (80Pu1~ 3 + UjPP3) ZI~~lr

2 1 II

n n
=F Uj.3i4 + (X~ja + I1(r))Am + ~rJ)Afl

I tn[Ajp
2

I

3 ntaU a33 7-XrA r + O(ri~U~ x 33 Uj, LQ.3 ) 2; 4r =?

rI TI I

Uj~Z ((i +' (()f + UyjjAM + jj ;Rr

+ (5.47) 8j~~i3)N

3 U~P'a 7- NO( + 9004)AI + Uj=33 Z .(T)AM 3 0 (.6

ca rt hmi w eaaestoefrjyandthohe for j = 3.Fr ' we getai
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n n n
U ri= 1 (X r) + t(r))m + U3.ii Y- 9(r)Amr + 2 4nUX. 3 3 r=1 ('(r)- (t))Al1T

1 2 n

" jnU3,33 Y- (r)Amr3  0 (5.48)

For the special case where n = 2 these equations reduce to the equations (4.50)-(4.52) derived

before for a bi-lamninat. composite. From (5.44) we can also calculate 19

;j = I(O)IUL/- IUk,/a + I4 1) Uk,03 - I ( u)k/3 (5.49)

which for the isotropic case reduces to

n n
=~ (83~k6 I )Lk,,) r + (83k~jI + 8NjkUk.g Ij 9(r)AM

n n
- T [ IaJk X(Am 2 + (8k~jl + 8aJjk)Uk./a r- (r)Am]

n n+ - [83Jk1U'3rl
2 E 8 ik.k3 Zj X(r)A'r + (8 308jk + 83k8jP)UkP3 Y- 9.(lAmJ

n n
_ 1 [J [kk'i=3 Xr)Ar3 + (O°tk8 jp + 8 aP8jk)Uk.a3 Y- (r)Ar 3 ] (5.50)

The equations (5.50) are written in two separate sets. For j = y we get

n 4 n
aT = (Uy"3 + U3') - t(r)Amr + T u3  9 r) [Itr - )(r)]Amr

n n
- [ua- (h(r) + I9r))Alr2 + tLyia. I 9(r)Amrl

n n
3 [uai 3 Y- (X(r) + 9t(r))Amr3 + ",I1 3 Y- 9(r)Amr] (5.51)

and tor j = 3 we obtain
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n n

a3I u(rAA +~ 2U.37
2n 2

1 n

-" 3.,3 I n , 3 (5.52)
rI

For the special case of a laminate with two layer micro-structure (n=2) these equations reduce

to (4.58)-(4.60).
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6.0 DEVELOPMENT OF THERMO-MECHANICAL THEORY FOR COMPOSITE

LAMINATES

In order to develop a thermo-mechanical theory for the composite laminates, we begin by

writing down the local balance of energy and the Clausius-Duhem inequality for the k1

representative micro-structure. First we introduce the following additional five quantities

which we associate with a motion of the micro-structure:

The specific internal energy e* -*(00,03(k),4,t)

The heat flux vector q* = q*(a,03(k),4,t)

The heat supply or heat absorption r* = r*(0o,030k),4,t)

The specific entropy Tf' = Tj*(0a,03(k),,t) and,

The local temperature () = 0*(0O,O3(k),,t) which is assumed to be always positive. The

equation for the local balance of energy - the first law of thermodynamics - can be written

in the following form

pr - p + T q*k Ik -0 (6.1)

where p* is the density of the micro-structure, q*k and 7ii are defined by

q* = q gij (6.2)

and covariant differentiation is performed with repsect to the metric tensor gi* of the micro-

structure. Recalling the relations

.* *

gi =v.i

gij = gi .g1j (6.3)
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T*i g gl/ 2 ,r1jg.j

We can write

Yi i~ij 2 - 1 g jv *g1  (6.4)

Using (6.3)3 and the symmetry of T~j we can write

* I . *ijg.* + V!. - *ijg)

-2(v~ * -12 + V* g*-11T.') = g*-1 2T*i . v* (6.5)

As for the divergence of the heat flux vector, we have

div q* = q*k jk = g12(g*112 qk)k (6.6)

Introducing the results (6.5) and (6.6) in (6.1), we can write the local energy equation in the

following alternative form

P T5 -P + g*~I(~ - (g*IIq4)1 = 0 (6.7)

The energy equation can also be written in terms of the Helmholtz free energy function

defined by

e -)Tl (6.8)

The Clausius-Duhem inequality as a statement for second law of thermodynamics has the fol-

lowing local form for the representative micro-structure

11t2 *k
p*'*- pr 5 + O~*12 ()* )k 0 (6.9)

By combining (6.9) and (6.1) and using (6.6) we have the inequality
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i*

which in terms of the Helmholtz free energy xK* defined in (6.8) becomes

"P .i * 1N *k"

-p(+ 0) +. - q!k > 0 (6.11)

Now for elastic materials the constitutive relations for Helmholtz free energy, the specific

entropy and the stress tensor can be expressed in the following forms

V= *(;, O*) (6.12)

11* = - (6.13)

zT*ij = p* - (6.14)

where the partial derivative with respect to the symmetric tensor yij is understood to have the

following symmetric form

2a~

The constitutive relation for the heat flux vector has the form

q*k = q *k(Yi*,O*0 ) (6.15)

and the response function q*k in the light of the Clausius-Duhem inequality is seen to be res-

tricted by the inequality

-_l*kk ? 0 (6.16)

With the help of (6.13) and (6.14) the energy equation (6.1) is reduced to the following

form
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p*r° - q*kIk - P*0*Tl* = 0 (6.17)

where we have used the definition (6.8) in order to calculate i* in terms of ,* and then used

the relations (6.13) and (6.14) to further simplify the energy equation. It should be recalled

that the argument of different functions in the energy equation (6.17) is (Oa,0k),4,t) and this

equation is written for each and every representative element (k = 1,2,...,n) which repeats

itself in our model and n - -c. For a bi-laminate representative micro-structure with thick-

ness 42 we introduce the following composite quantities. These relations can be generalized

for a multi-constituent micro-structure without any difficulty (see definitions 5.3 and 5.4)

Pg/2r 42 p*g*l/2 ' d 4
0

(6.18)

Pg"2r, f- pg* 2r*4 d4
0

1/2qi =A gqid4

(6.19)

g, I fg*l/2q*a d4
0

P='2  '2(m) f p*g*l'1Tj*md4 (m = 0,1,2) (6.20)

We further assume that the variation of temperature 0* across the micro-structure is a linear

function of , hence

o*(oa,o3(k),4,t) = o(Oa,e 3(k),t) + 4l(Oa,O3(k),t) (6.21)

In order to derive the appropriate form of the energy equation for the composite laminate, first

we write (6.17) in the following form
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p*g*l2 r * - (g*lI 2q*k)k = pg*lrzfl 0  (6.22)

which after using (6.21) reduces to

P*g*l2r* - (g* l/ 2 ,q*k 4 = P*g*l"/2f*(Oo + 41) (6.23)

Now divide (6.23) by 42 and integrate with respect to 4 from 0 to 42, the result is

1 2 1 a -2 1 ,2 a..*1/ .
fJ p' g*'1 Yd - -2 (g*1/ 2q* ) 1d (g.f 2 qa3)d4

00 2° 0 1 42

f p*g*f* +g"l 2 i* d (6.24)

Each term in the above equation can be written in terms of the composite quantities intro-

duced in (6.18)-(6.20) except the third term which is the difference between the values of

g*112 q*3 above and below the representative element divided by its thickness 42, namely

f (g*lI2q*3)d4 = -1 [g*1/ 2 q*3 (Oa0 3(k+l)t) - g*/ 2 q*3 (a0 3 (k)t)]

Now we assume the existence of the continuous function h(e,03,t) which coincides with

q*3(0a,0 3(k),t) at 3 = 030k, and further approximate the right side of the above equation as the

gradient of this function multiplied by g1/ 2 in the 03 direction, i.e., a(g 1' 2 h)/1G03. As a result,

(6.24) can be written as

pg 12r - (gl 2qa),t - --. (g1t h) = pgl2(4orlo + 41ij 1) (6.25)

In writing (6.25) we have also made use of the balance of mass equation.

Next we multiply (6.23) by 4, integrate with respect to from 0 to 2 and divide it by 2

to get
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.[ P*g*l 2r* d4 - f 4(g*l q*),a - J (g*l/ 2q*'3 )dl
42 0 0

- 2 f p*g*l/r2f* (0 + 401 )d4 (6.26)

Using integration by part, the third term on the left-hand side of (6.26) can be written as

"" !, .. (g*l/2 q*3)d4 = .1 [,g* /2q*3 .* 3d1 = g1 2 (h-q 3) (6.27)

which in writing the last term we have used (6 .19 ), and the definition of h given above.

Using this result together with the relations (6.18)2, (6.19)2 and (6.20) we can write (6.26) in

the following form

Spg1/2r1 - (g/ 2qla),a - gl/2(h-q 3) = pgl/2(00i 1 + 01 2) (6.28)

To determine the appropriate form of constraints on the composite heat flux vectors, first

we write the Clausius-Duhem inequality (6.16) in the following form

g*1/2 .. *ko0 < 0

which by (6.21) reduces to

g*1/ 2 4*a(oo,a + 4 i'a) + g-1/ 2 1*3 <0 (6.29)

Next we divide (6.29) by 2 and integrate with respect to 4 from 0 to 2 which after using

(6.19) can be written as

112-a fl + g 3/29 4o,a l(a + +  3(1 < 0

or

qIa.a + q" ,. + q301 -< 0 (6.30)
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I which is the appropriate form of Clausius-Duhem inequality for the elastic composite lam-

inates.

When the rate of heat supply or absorption is zero (r = r1 = 0) the energy equations for

the composite reduce to

(gl/ 2 qa)a + a (gl/2 h) + p gla2 (4 + 0 (6.31)

(g112 q ),. + g1/2 (h-q3) + P g1/2 (€0 ij 1 + 2)= 0 (6.32)

For small deformations of composites with initially flat plies the energy equations (6.31) and

(6.32) further reduce to

ah
cea + _ ( + p(0o0lo + 0 11) = o

(6.33)
qfca + h - q3 +P(i 1 +41)=

where obviously no distinction should be made between contravariant and covariant com-

I ponents of heat flux vectors.

I The derivation of energy equations (6.25)-(6.28) and the Clausius-Duhem inequality

j (6.30) for the composite laminates is not atfectnd by the number of layers (or constituents) in

the representative micro-structure. The only necessary modification in the case of a multi-

I constituent composite is the replacement of 42 by k in definiaons (6.18)-(6.20). Here E is

the thickness of the representative element which is supposed to consist of n layers. Of

i course E is still supposed to be a very small number.

I To recapitulate, for a composite whose micro-structure is composed of n layers with a

total thickness of we have the following relations for energy balance and the Clausius-

Duhem inequality

I
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j pr - g- 1/2[(gl2qa)., + Ov (g' h)] MAOp + 40A)

pr, + q3 - h - g-/ 2 (glfq1), = p(o0  + (6.34)

I qooa + qlaol,a + q30, a 0

where the composite quantities are defined as follows

P9 pg 2r - f- p*g*/2jed4

Pg112r1  f p*g*r*4 d4

/,pg)p = 63.

P9 f pg-2%mt (m 0,1,2) (.5

!0

1/2
9q' f g g*"*d

I0
Io

I1

I

g 1/2q -L "f g*l/2q*c4d4

I
I BASE
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7.0 CONSTITUTIVE RELATIONS FOR LINEAR THERMO-ELASTICITY

For a composite laminate whose micro-structure is composed of n layers with different

linear thermo-elastic constituents, we recall the following constitutive equations for the stress

tensor r*j, entropy il* and the heat flux vector q*

T(ciA = q(ji - c(&)O (7.1)

I (P*T)(a) - ciJ)ij + (p"c)(a)O (7.2)

q() _ _0 -00 (7.3)

where cij'), ci ), c(,) and kqj) (at = 1,2,...,n) are constants in the associated layers. Moreover,

we have the following symmetries

I c '(a)= C( (7.4)

cIi) = cx) (7.5)

Now we proceed to calculate the appropriate constitutive relations for composite stress

vector T', composite couple stress S, composite entropy 71(m) (m = 0,1,2), and composite heat

flux vectors qi and qft . The contribution of the first part of (7.1) to the constitutive relations

for Ti and S' ( and consequently cij and S' j ) has already been calculated (see section 5).

Therefore we need to find out the effect of the second part of (7.1) in the constitutive rela-

Ltions for T' and S". Similar to what was done in section 5 we adopt the following definitions

for the weighted averages of various quantities

I j(k)ij f 1 kcj)d4 (7.6)

4n f 4k(p~c()d4 77
0
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L(k)ij .. f _L k j)d (7.8)
o

Now recalling (5.11), (5.12), (6.21) and (7.6) we can write

"Jg dc j) 0* g*/2 gj*d = (g' gj* d4
+ C

+ 4c .J) gg* d4 f (C ig; + ci3)gl2d

±-l WIgl/2 "~g + CO *

+ f " (c9+ 3)d

= g1 /2  " I )cid+ gl/2 4g. I + &A )ci+d4

L0 4 o 2g 4 2g

+l, 00 g 2 1/2 9 -)~ g f ( )'d
4nJ 2g 4n2g

+ 1 g 1/2 X4 gj JL E t 2(1 +  )cldt + . 4(l
4nf 2g 4n f 2gJ [( + (  ) d

+ 01 g I/2 gj (1 + )ciJd + X. 42(l + )cild4}mf 2g 2g1 1

1 I j(1)ij + j(j(l)iP + A j(2)iD)2

=I g002 gJ(O)tj + 2g + 2g

+ 01 g1/2 gjj(,l)ij + - 2g + 4(j(2 )iP + -g j(3)) (7.9)
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By combining the results (7.9) and (5.17) we can obtain the response function for the

composite stress vector Ti. As before if we disregard the factor g1/2 g1, what remains is the

constitutive relation for ij which is recorded below

2g 2g

+ (1(1)ijla + -LA i(2)ijka + Xj(i(2)iPka + "-LA i(3)iPIa)})KIa
2g P2g

_ oT(0)ii + .g. j(1)ii + ((1)i[ + gA j(2)iP)}Sg + 2g

-1 {j(l)ij + j(2)ij + Xj(j(2)ip + - j( 3)iP) (7.10)

2g 2g

Similar steps are followed to find the constitutive equations for S' and S'j. The contribution

of the thermal term is

g. gl/2gl/2 {j~~tj A j(2)1i + (j2 Al$

.2.. c J 0* 1 gj*dj = } g g(j~l~ + "2g + + 2gj() }11
C~a */2 (JI~ai A j( j J(j() +

+01 gl/2 gj {j(2 )tj + -. g + X + g j(4)4)) (7.11)
2g 02g

Again combining (7.11) and (5.20) we find the constitutive relation for S t. Dropping the

common factor g1/2 g, would result in the constitutive relation for Se" which is recorded

below.

.yk,(I(I)ajk A +Ai(2)cjkl + '.1I2 ortic + A l(3Iati))

2g 2g

+ K43{ (2)xjlo + 2 1(3)ajlo + 41(3)c'ry'I +A L (4)Cty)}
2g 2g

A.+ j(2tj + X(j(l)cx + (3 )a P)

-00( 2g 2g
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-- {j(2)aj + j( 3)aj + X4 (j(3)4 + j(4)4) (7.12)

- +2g +27.2

The next step is to find the constitutive relation for the specific entropies 1(mn) (m =

0,1,2). We calculate the contribution of each term of the relation (7.2) separately. By (6.35)3

we have

12
= J c ,) ./2,g + - (p*c)(a)O*g*la4md4 (7.13)

Since g*1/ 2 = g1/2 (I + -. ) we can write the first part of (7.13) as
2g

f )ij d*/2 gmd 4m(l+ g (cJ)yijd4 (7.14)

which by (2.31)-(2.34) reduces to

= £..2 J m~l+ -( )cJ)d1yTJ +['. fm (

4n mo+ i )dg4nf2g

g1/2 { yj[j(m)ij + . I (m+l)i P + A j(m+2)iP } (7.15)

2g 2g

The second part of (7.13), by (6.21) and (7.7), is written as

.J (pc)(a)f* mdF = J ! m(1 + )(+F€ pc)ad
1/2g

- Og 1/2 4m(l + 4A )(P*c)(a)d4

0f m2g

+ f m + )(pC)(a)d
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.. g 1/2 (K(m)

+ LK(m+l)} + 01 giI2 {K(m+') + .-L }~+) (7.16)

2g 2g

Substituting (7.15) and (7.16) in (7.13) we obtain
... ~~~..~ j(m+l)ij)) gla c+.A.Jm2$

pg 2 n(m) = g1/2 yij(j(m)ij + A2g } + g i2,(j(m+l)iO + "L j(m+2)i)

+ 0 g1/2 (K(m) + K(m+) g1 1/2 (K(m+I' + -L K(m+2))

2g 2g

or

A j(m+l)ij) + y15(j(rn+l)i 3 + A J(m+2)iO)P~lkm) = TiJ(J(m)ij + 2g 2g

+ 0(K(m) + A K(m+ l )) + (K(m+ + - K(m+2)) (m = 0,1,2) (7.17)
2g 2g

We start with (6.35)4 to find the constitutive relation for qi. Substituting from (7.3) in (6.35)4

we get

g l12qi= I. J g, lr2q~id = J g .- k •Od

1/21/2

"9 q- f g*q'd g*1/2 k(Odt

0 0

! ( (1 + )(k000; + 0 03)dr (7.18)

By (6.21)

+ 40. 1 + . (7.19)

(7.20)
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Noting these results we simplify (7.18). Hence

1/22q 9MA.gq =1 (1 + -- )kiP(0°. +
0 2g

Ili (I + 1)kiO(Id4
o g

2g

4n2g 4n2g

f (1 + -A-)kid ) (7.21)

Using (7.8) we get

gl/2 qi = _ g112 (o0 p[L(OA + 6. Lgl)'P + +,p A+-L L(2)
2g 2g

+ O[L(°)j + A L(I)i3])
2g

or

!,qi =_(L(O)iP + Ag L()iNP)0o, p -(IiP+A ()Pop
[ - (L ( )i 3 +- ((J)i )i +7.22

2g 2g

(L(0~i3 + 2LgM~o (7.22)

Finally we use (6.35)5 to derive the constitutive equation for q"'. Similar to the above

development, we write

I 1/2 a~=- g*l/q*E1t d .. g*1 /2 k"jOd
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= f t(1 + 2" -)(ko06 + kO' )dt
IMo 2g

112 l "gk (°+O') 11 "g "

- f 4(1 + A(1 + -. L.. 4 + )k 3 jd (7.23)
4n 2g f, 2g

which by (7.8) reduces to

=-(L ( 1 13 + -L L(2 )atP)Oo,p (L[(2  + Ag L (3)a')0 1,. - (L(' a + - - L(2*3) (7.24)

2g 2g 2g

This concludes our derivation of linear thermo-elastic constitutive relations for composite lam-

inates.

For small deformations of a composite with initially flat plies the foregoing equations are

simplified to the following constitutive relations:

=I (1) - Ji)o - Ji'')Ol (7.25)
scgj = Ij aUk1 (7.26)

4aj .j14,1 + Ij U1,03- aj v j'l(.6

p71(m) = J.(m)ui.j + Ji['5u O + K(m+l) (m = 0,1,2) (7.27)

qi = -LiW)oOa - LiW)0l1, - i °)OI (7.28)

q, = - L)aPop - L(2)° P 1, - L(*30, (7.29)

The constitutive coefficients 1(0), 1(') and 1(2) have already been calculated and recorded in

equations (5.26). As for the other constitutive coefficients we use the results of section 5.

Comparing definitions (7.6)-(7.8) with (5.8) and using the results (5.4) and (5.30) we can

write

j(k)ij = ".i- k (r) Am I (7.30)
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K(k) = _Ik~ 1' ! (p*C)(r)Amrk+l (7.31)
k(pc)r-- I

n1

L(k)iJ = 4! k r) Amrk+l (7.32)
k+1 r--I

It should be noted that kj) in equation (7.32) are the coefficients of thermal conductivity of

different layers of the representative micro-structure and are not to be confused with the

superscript k which assumes non-negative integer values.

If the micro-structure is composed of isotropic layers, the coefficients of thermal stress

ci') and thermal conductivity kj,) can be written in terms of only one constant for each layer.

For such case we write

ci~r) = P(r)sij (7.33)

ki(r) = k(r)8ij (7.34)

Taking note of these relations and relations (7.30) and (7.32) we obtain

11

J( °) I~ z i3, 7.5
IJ 3 ~'r=1

Ji_ = 2 i  l[ r)Amr3(735

n

J'(0) - - k(r)Amr

1.2) = I =_

n
8. 2 I k(TAmr
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n~jj k~Afly(7.36)

Consequently the constitutive equations (7.25)-(7.29) reduce

n n
Ti 8jZ (r)Ukk - P~)OAr+ (uij + u.) g Pr^m

+ n ~ X U g

n
+ -(UL08j + Ujw~a 1: 1(rArn (7.38)

nn

2 r I

+1n
311 = (a r In I (X(r)Upp3 P(* )IAM

+ [I3u.0 + Ujjx 3 + (Pg(r)IIfl (7.38)

P,1(0) = Pru~ + +PC()oAn

3 r~n

+ n :[Prupp +(B A SEOIA 7.9
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I ,_ + (p(7.41)
+4 =

q = -* )oar_!krAr- q~ =Z ~~ (7.42)

nq3-- I k()kAX (7.43)

m I 1

q -= - Vk)Ar 2 - 7-, k(r)&I (7.44)
2 mlr~m 3 i r-- I7

In relation (7.44), ac is written as a superscript only for convenience and does not signify the

contravariant position.

The linear equations of motion and balance of energy for a composite with initially flat

plies are derived by substituting (7.25)-(7.29) in (2.123), (2.124) and (6.33). Using the results

(5.41) and (5.42) in conjunction with (7.25) and (7.26) we have the following equations of

motion in linear thermo-elastic theory

n

a°klka + Ij1 ulA,3 -aj O.a -j al,a + bj X arrtr + 0j,3
r=I

n 1n= ij r=P (r)Ami + - o)Arr (7.45)
m 1 2r--

+ I~pu~3 - J( 01'- + a, - I~JIOIk
IaJUk.1, + la((INU/,a3 - aJN0a - j Vla Ojk

n

-- I4jU43 + J +4 + J +OI + Cj r=Il PAM,

1 n P~)m 2  1n
22 213 - pr)Am 3  (7.46)

The energy equations when the rate of heat supply or absorption is zero are recorded in rela-

tions (6.33) for small deformations of thermo-elastic composites with initially flat plies.
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Substituting the constitutive relations (7.27)-(7.29) in (6.33) we find the following coupled

differential equations for displacement and temperature fields

( 0 Ji? + 1 ij + ( 0 Ji,)+ O1JiW))ui.p3 + (oK (0 ) + 010))'

+ (O0 K) + 01K 2 ) 1 + h L- - = 0 (7.47)ah"" Q ,p -~1 Q t1,apL0301a 0(.7

(0oJi 1) + O1Ji?))i.. + (0 0 j?) + 01ji?)) i13 + (0 oK0 ) + 01K(2)) o

+ ( 0oK( 2) + 0 1K0)) 1 + h + L3(0)0o.[ + W'*,p + LJ)O1

-La(Ro. - La( I.tIa - L 4al)01. = 0 (7.48)

For static problems in the absence of body force and heat supply, the foregoing equations

are further reduced to
I( .) u (1O -J oIC

jk,Jua + IaJ)U1 3a - J(0' o) a _J + j1), ,+0 - (7.49)

Il. a + I a( J)lu. 3 - J(1"to.a -jl)4Ot.a + Gj- Ij)Iuk,

- I4IU/I 3 + JJ°)0o + J1 = 0 (7.50)

Dh _L( 0 0 - L ( 1 - La(03)0 = 0 (7.51)D0-- 3 2 ~ tl 4 .

h + L4)0.,p + Lj)01.p + L4°)01 - L()0 0, ap - L(2 01.,tp - L3)O1.ct 0 (7.52)

Similar to what was done previously in order to find a relation between the director dis-

placement and the gradient of displacement vector, we enforce the continuity of the tempera-

ture field across two adjacent micro-structures to derive an analogous relation betwecn 0. and

01 defined in equation (6.21). In order that the temperature field be continuous on the com-

mon surface between kh and (k+I)St micro-structures we should have
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0=O,(I~~)Ot 0*(Oa,03(k), Et) (7.53)

Now by (6.21) we have

0 *( 0 a0e3(k+l 1 )t = O(oa,e3(k+1),t) (7.54)

0* (0a,03(k), "t) = ,O(0a,&3(k),t) + E,0(),')()t (7.55)

Substituting from (7.54) and (7.55) in (7.53) we get

OO(~t'31'+1)t)= O,0 (Oa(c),t) + 4,(OaO3(k),t)

or

O1 ()03&0 ',t) = -. '(0,&3( lt) _ 0 (0 a 0 3(k),1 )) (7.56)

By smoothing assumptions and noting the smallness of En we approximate the right-hand side

of (7.56) as the gradient of 0,, in the 03 direction. So we obtain

a93- ~(~,&t (7.57)

This conclusion is used in various field equations. In particular, equation (7.49)-(7.52) reduce

to

(Q)Ik~+ ~u, 3 - )oa (7.58)

+ p W0U,~3 - J&(i )00.a - J (j0.a+ -Y I4k)Ukcj

- I4u 3 + JjjO+ J)03= 0 (7.59)

- 00Oc - L40~,apg3 - Lc~xo3)0cx 3 = 0 (7.60)

h + L4 00p + Lik3+ W0*3- 40ap- La(WOO -'4~.a (7.61)
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Eliminating aj between (7.58) and (7.59), and h between (7.60) and (7.61) we find the follow-

ing coupled differential equations for displacement and temperature fields. Since we are

investigating the static problems in the present derivation the equation for temperature, i.e.,

the equation resulting from the energy equations is independent of the displacement field.

Recalling (5.45), the displacement equation becomes

ijk)kh+ 11i4UP - 9~JUkk13 - I((2JRUkQP33
J (900' - .(100,3 +j(1) j(

- - J 0+ a 3 + Jdo.o33 = 0 (7.62)

and the temperature equation by (7.60) and (7.61) is

'+ (14a - Q 0 ,.3 3 - L 0,aP33 = 0 (7.63)

Having determined the displacement and the temperature fields, the interlaminar stresses aj

and heat flux h can be determined from (7.59) and (7.61), respectively. The results are

= I4 )Uk.k + 11j20Uk.3 - I4( U- I) U -
(2

+ jl)00.Ct + j(2),w - J10- Jj)O0 (7.64)

h = LQO.alP + I.4 o.a,3 + L_)00ocxo - l-,oo- Wo - L424o3

= L.(V4o,iP + l.WOo,.03 + (Lo(9W - .))00, - (7.65)
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